Design and structural analysis of non-pneumatic tyres for different structures of polyurethane spokes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rhyne TB, Cron SM (2006) Development of a non-pneumatic wheel. Tire Sci Technol 34(3):150–169. https://doi.org/10.2346/1.2345642
Cho JR, Kim KW, Yoo WS, Hong SI (2004) Mesh generation considering detailed tread blocks for reliable 3D tire analysis. Adv Eng Softw. 35(2):105–113. https://doi.org/10.1016/j.advengsoft.2003.10.002
“Energy Absorption of Structures and Materials - 1st Edition.” https://www.elsevier.com/books/energy-absorption-of-structures-and-materials/lu/978-1-85573-688-7 (accessed 29 Jun 2021)
Sun Y, Wang B, Pugno N, Wang B, Ding Q (2015) In-plane stiffness of the anisotropic multifunctional hierarchical honeycombs. Compos Struct 131:616–624. https://doi.org/10.1016/j.compstruct.2015.06.020
Li Y, Abbès F, Hoang MP, Abbès B, Guo Y (2016) Analytical homogenization for in-plane shear, torsion and transverse shear of honeycomb core with skin and thickness effects. Compos Struct 140:453–462. https://doi.org/10.1016/j.compstruct.2016.01.007
Fan H, Jin F, Fang D (2009) Uniaxial local buckling strength of periodic lattice composites. Mater Des 30(10):4136–4145. https://doi.org/10.1016/j.matdes.2009.04.034
Ju J, Summers JD, Ziegert J, Fadel G (2010) Compliant hexagonal meso-structures having both high shear strength and high sehar strain. In: Proceedings of the ASME Design Engineering Technical Conference, vol 2, no. PARTS A AND B, pp 533–541. https://doi.org/10.1115/DETC2010-28672
Ju J, Summers JD (2011) Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain. Mater Des 32(2):512–524. https://doi.org/10.1016/j.matdes.2010.08.029
Kim K, Kim DM, Ju J (2013) Static contact behaviors of a non-pneumatic tire with hexagonal lattice spokes. SAE Int J Passeng Cars Mech Syst 6(3):1518–1527. https://doi.org/10.4271/2013-01-9117
Ju J, Kim DM, Kim K (2012) Flexible cellular solid spokes of a non-pneumatic tire. Compos Struct 94(8):2285–2295. https://doi.org/10.1016/j.compstruct.2011.12.022
Ju J, Veeramurthy M, Summers JD, Thompson L (2013) Rolling resistance of a nonpneumatic tire having a porous elastomer composite shear band. Tire Sci Technol 41(3):154–173. https://doi.org/10.2346/tire.13.410303
Jin X, Hou C, Fan X, Sun Y, Lv J, Lu C (2018) Investigation on the static and dynamic behaviors of non-pneumatic tires with honeycomb spokes. Compos Struct 187(December 2017):27–35. https://doi.org/10.1016/j.compstruct.2017.12.044
Balawi S, Abot JL (2008) The effect of honeycomb relative density on its effective in-plane elastic moduli: an experimental study. Compos Struct. 84(4):293–299. https://doi.org/10.1016/j.compstruct.2007.08.009
Heo H, Ju J, Kim DM (2013) Compliant cellular structures: application to a passive morphing airfoil. Compos Struct. 106:560–569. https://doi.org/10.1016/j.compstruct.2013.07.013
Jin T, Zhou Z, Wang Z, Wu G, Shu X (2015) Experimental study on the effects of specimen in-plane size on the mechanical behavior of aluminum hexagonal honeycombs. Mater Sci Eng A 635(635):23–35. https://doi.org/10.1016/j.msea.2015.03.053
“material properties of polyurethane.” http://www.matweb.com/search/DataSheet.aspx?MatGUID=26606798bc9d4538a7c7eadf78ab082b
Szurgott P, Jarzębski Ł (2019) Selection of a hyper-elastic material model—a case study for a polyurethane component. Lat Am J Solids Struct 16(5):1–16. https://doi.org/10.1590/1679-78255477
MSC. Software Corp (2010) Experimental elastomer analysis. User Guide, USA
“ANSYS mechanical structural non-linearities.” https://studylib.net/doc/18120128/ansys-mechanical-ansys-mechanical-structural
Fatchurrohman N, Chia ST (2017) Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: simulation approach. IOP Conf Ser Mater Sci Eng 257(1). https://doi.org/10.1088/1757-899X/257/1/012060
Fu MH, Chen Y, Hu LL (2017) A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Compos Struct. 160:574–585. https://doi.org/10.1016/j.compstruct.2016.10.090
Sadd MH (2014) 5.2 Elastic Strain Energy. Energy 3:123–125