Thiết kế và phân tích thống kê của một thuật toán tìm kiếm cục bộ lai cho vấn đề lập thời khóa biểu khóa học

Journal of Scheduling - Tập 15 - Trang 49-61 - 2011
Ruggero Bellio1, Luca Di Gaspero2, Andrea Schaerf2
1Dipartimento di Scienze Statistiche, Università di Udine, Udine, Italy
2Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica, Università di Udine, Udine, Italy

Tóm tắt

Chúng tôi đề xuất một thuật toán tìm kiếm cục bộ lai để giải quyết Vấn đề Lập Thời Khóa Biểu Dựa Trên Chương Trình Giảng Dạy và tiến hành một nghiên cứu thống kê có hệ thống về ảnh hưởng tương đối của các yếu tố liên quan đến hiệu suất của thuật toán. Trong đó, chúng tôi áp dụng các kỹ thuật thống kê hiện đại cho việc thiết kế và phân tích thí nghiệm, chẳng hạn như các hypercube Latin trải chỗ gần như trực giao và các phương pháp bề mặt phản hồi. Kết quả của phân tích này cho thấy rằng kỹ thuật của chúng tôi, khi được điều chỉnh đúng cách, có thể so sánh một cách thuận lợi với những kỹ thuật tốt nhất đã biết cho vấn đề này.

Từ khóa

#Lập thời khóa biểu #thuật toán lai #tìm kiếm cục bộ #phân tích thống kê #thiết kế thí nghiệm

Tài liệu tham khảo

Adenso-Diaz, B., & Laguna, M. (2006). Fine-tuning of algorithms using fractional experimental designs and local search. Operations Research, 54(1), 99–114. Anagnostopoulos, A., Michel, L., Van Hentenryck, P., & Vergados, Y. (2006). A simulated annealing approach to the traveling tournament problem. Journal of Scheduling, 9(2), 177–193. Bang-Jensen, J., Chiarandini, M., Goegebeur, Y., & Jørgensen, B. (2007). Mixed models for the analysis of local search components. In T. Stützle, M. Birattari, & H. Hoos (Eds.), Lecture notes in computer science: Vol. 4638. Engineering stochastic local search algorithms (SLS-2007) (pp. 91–105). Berlin: Springer. Bonutti, A., De Cesco, F., Di Gaspero, L., & Schaerf, A. (2010) Benchmarking curriculum-based course timetabling: formulations, data formats, instances, validation, visualization, and results. Annals of Operations Research. doi:10.1007/s10479-010-0707-0 Box, G. E. P., Hunter, J. S., & Hunter, W. G. (2005). Statistics for experimenters: design, innovation, and discovery (2nd ed.). New York: Wiley-Interscience. Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A graph-based hyper-heuristic for educational timetabling problems. European Journal of Operational Research, 176(1), 177–192. Burke, E. K., Mareček, J., Parkes, A. J., & Rudová, H. (2008a). Penalising patterns in timetables: Novel integer programming formulations. In S. Nickel & J. Kalcsics (Eds.), Operations research proceedings 2007. Berlin: Springer. Burke, E. K., Mareček, J., Parkes, A. J., & Rudová, H. (2008b). A branch-and-cut procedure for the Udine corse timetabling. In E. Burke & M. Gendreau (Eds.), Proceedings of the 7th international conference on the practice and theory of automated timetabling (PATAT-2008). Causmaecker, P. D., Demeester, P., & Vanden Berghe, G. (2009). A decomposed metaheuristic approach for a real-world university timetabling problem. European Journal of Operational Research, 195(1), 307–318. Chiarandini, M., Fawcett, C., & Hoos, H. H. (2008). A modular multiphase heuristic solver for post enrolment course timetabling. In E. Burke & M. Gendreau (Eds.), Proceedings of the 7th international conference on the practice and theory of automated timetabling (PATAT-2008). Cioppa, T. M., & Lucas, T. W. (2007). Efficient nearly orthogonal and space-filling Latin hypercubes. Technometrics, 49(1), 45–55. Coy, S. P., Golden, B. L., Runger, G. C., & Wasil, EA (2001). Using experimental design to find effective parameter settings for heuristics. Journal of Heuristics, 7, 77–97. Di Gaspero, L., & Schaerf, A. (2006). Neighborhood portfolio approach for local search applied to timetabling problems. Journal of Mathematical Modeling and Algorithms, 5(1), 65–89. Di Gaspero, L., McCollum, B., & Schaerf, A. (2007). The second international timetabling competition (ITC-2007): Curriculum-based course timetabling (track 3) (Tech. Rep. QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0/1). School of Electronics, Electrical Engineering and Computer Science, Queen’s University, Belfast (UK), ITC-2007 site: http://www.cs.qub.ac.uk/itc2007/. Gendreau, M., Hertz, A., & Laporte, G. (1994). A tabu search heuristic for the vehicle routing problem. Management Science, 40(10), 1276–1290. Glover, F., & Laguna, M. (1997). Tabu search. Dordrecht: Kluwer Academic. Hoos, H. H., & Stützle, T. (2005). Stochastic local search—foundations and applications. San Francisco: Morgan Kaufmann. Hothorn, T., Hornik, K., van de Wiel, M. A., & Zeileis, A. (2008). Implementing a class of permutation tests: The coin package. Journal of Statistical Software, 28(8), 1–23. http://www.jstatsoft.org/v28/i08. Hutter, F., Hoos, H. H., & Stützle, T. (2007). Automatic algorithm configuration based on local search. In R. C. Holte & A. Howe (Eds.), Proceedings of the 22nd AAAI conference on artificial intelligence, July 22–26, 2007, Vancouver, British Columbia, Canada (pp. 1152–1157). Kirkpatrick, S., Gelatt, C. D. Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680. Kleijnen, J. P. C., Sanchez, S. M., Lucas, T. W., & Cioppa, T. M. (2005). A user’s guide to the brave new world of designing simulation experiments. INFORMS Journal on Computing, 17, 263–289. Lach, G., & Lübbecke, M. (2008a). Curriculum based course timetabling: Optimal solutions to the Udine benchmark instances. In E. Burke & M. Gendreau (Eds.), Proceedings of the 7th international conference on the practice and theory of automated timetabling (PATAT-2008). Lach, G., & Lübbecke, M. E. (2008b). Optimal university course timetables and the partial transversal polytope. In C. C. McGeoch (Ed.), Lecture notes in computer science: Vol. 5038. Experimental algorithms, 7th international workshop, WEA 2008 (pp. 235–248). Berlin: Springer. Lü, Z., & Hao, J. K. (2010). Adaptive tabu search for course timetabling. European Journal of Operational Research, 200(1), 235–244. Lucas, T. W., & Sanchez, S. M. (2005). Nolh designs spreeadsheet. http://diana.cs.nps.navy.mil/SeedLab/, visited on August 11, 2010. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A. J., Di Gaspero, L., Qu, R., & Burke, E. K. (2010). Setting the research agenda in automated timetabling: The second international timetabling competition. INFORMS Journal on Computing, 22(1), 120–130. Müller, T. (2008). ITC2007 solver description: A hybrid approach. In E. Burke & M. Gendreau (Eds.), Proceedings of the 7th international conference on the practice and theory of automated timetabling (PATAT-2008). Murray, K. S., Müller, T., & Rudová, H. (2007). Modeling and solution of a complex university course timetabling problem. In Lecture notes in computer science: Vol. 3867. Practice and theory of automated timetabling VI (pp. 189–209). Berlin: Springer. Myers, R. H. Montgomery, D. C. (2002). Response surface methodology (2nd ed.). New York: Wiley. Paquete, L., Chiarandini, M., & Basso, D. (Eds.) (2006). Proceedings of the workshop on empirical methods for the analysis of algorithms, EMAA 2006. Reykjavik, Iceland. Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-plus. Berlin: Springer. R Development Core Team (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org. Ridge, E., & Kudenko, D. (2006). Sequential experiment design for screening and tuning parameters of stochastic heuristics. In L. Paquete, M. Chiarandini, & D. Basso (Eds.), Proceedings of the 1st workshop on empirical methods for the analysis of algorithms at the ninth international conference on parallel problem solving from nature (PPSN), Reykjavik, Iceland (pp. 27–34). Ridge, E., & Kudenko, D. (2007). Tuning the performance of the mmas heuristic. In T. Stützle et al. (Ed.), Lecture notes in computer science: Vol. 4638. Engineering stochastic local search algorithms. Designing, implementing and analyzing effective heuristics, international workshop, SLS 2007, Proceedings, Brussels, Belgium, September 6–8, 2007 (pp. 46–60). Berlin: Springer. Ryan, T. P. (2007). Modern experimental design. New York: Wiley. Stützle, T., Birattari, M., & Holger, H. H. (Eds.) (2007). Engineering stochastic local search algorithms. In Lecture notes in computer science: Vol. 4638. Designing, implementing and analyzing effective heuristics, international workshop, SLS 2007, Brussels, Belgium, September 6–8, 2007, Proceedings. Berlin: Springer.