Design and simulation of quantum-dot cellular automata serial decimal pipelined processor based on Turing machine model
Tóm tắt
Từ khóa
Tài liệu tham khảo
ITRS, International technology roadmap for semiconductors, Online available: 〈http://www.itrs.net〉.
Lent, 1997, A device architecture for computing with quantum dots, Proc. IEEE, 85, 541, 10.1109/5.573740
Frost, 2002, Memory in motion: a study of storage structures in QCA, Proceed. First Workshop Non-Silicon Comput., 2
Niemier, 2001, Exploring and exploiting wire-level pipelining in emerging technologies, Proceed. 28th Ann. Int. Symp. Comput. Archit., 166, 10.1145/379240.379261
Swartzlander, 2010, Computer arithmetic implemented with QCA: a progress report, Proceed. 44th Asilomar Conf. Signals, Syst. Comput., 1392
Teja, 2008, QCA based multiplexing of 16 arithmetic & logical subsystems – a paradigm for nano computing, Proceed. 3rd IEEE Int. Conf. Nano/Micro Eng. Mol. Syst., Sanya, China, 758, 10.1109/NEMS.2008.4484438
Patidar, 2013, A novel 4-bit arithmetic logic unit implementation in quantum-dot cellular automata, Int. J. Nanotechnol. Appl., 3, 1
Pandey, 2014, Design and implementation of 16-bit arithmetic logic unit using quantum dot cellular automata (QCA) technique, Int. J. Eng. Res. Appl., 4, 10
Babaie, 2019, Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA), IEEE Trans. Circ. Syst. II: Express Briefs, 66, 963
Walus, 2004, 1, 30
Fazzion, 2014, A quantum-dot cellular automata processor design, Proceed. 27th Symp. Integr. Circ. Syst. Des. (SBCCI), Aracaju, Brazil, ACM, 1
Niemier, 1999, Logic in wire: using quantum dots to implement a microprocessor, Proceed. 6th IEEE Int. Conf. Electron. Circ. Syst., 3, 1211
Walus, 2003, Computer arithmetic structures for quantum cellular automata, Proceed. 37th Asilomar Conf. Sig. Syst. Comput., 2, 1435
Hänninen, 2010, Binary adders on quantum-dot cellular automata, J. Signal Process. Syst., 58, 87, 10.1007/s11265-008-0284-5
Walus, 2006, Design tools for an emerging SoC technology: quantum-dot cellular automata, Proc. IEEE, 94, 1225, 10.1109/JPROC.2006.875791
Srivastava, 2011, QCAPro - An error-power estimation tool for QCA circuit design, Proceed. IEEE Int. Symp. Circ. Syst. (ISCAS), 2377
Torres, 2018, An energy-aware model for the logic synthesis of quantum-dot cellular automata, IEEE Trans. Comput. Aided Des. Integr. Circ. Syst., 37, 3031, 10.1109/TCAD.2018.2789782
Niemier, 2004, Using circuits and system-level research to drive nanotechnology, Proceed. IEEE Int. Conf. Comput. Des. (ICCD’04), 302
Kenney, 2005, High-speed multioperand decimal adders, IEEE Trans. Computers, 54, 953, 10.1109/TC.2005.129
Standard for floating-point arithmetic, IEEE Standard754-2008.
Shah, 2012, Quantum cellular automata based efficient BCD adder structure, Commun. Inf. Sci. Manag. Eng., 2, 11
L. Lu, W. Liu, M. O'Neill, E.E. Swartzlander, Cost-efficient decimal adder design in quantum-dot cellular automata, in: Proceed. IEEE Int. Symp. Circ. Syst. (2012), pp. 1347-1350.
Cocorullo, 2017, Design of efficient BCD adders in quantum-dot cellular automata, IEEE Trans. Circ. Syst. II: Express Briefs, 64, 575
Abedi, 2018, Decimal full adders specially designed for quantum-dot cellular automata, IEEE Trans. Circ. Syst. II: Express Briefs, 65, 106
Podder, 2014, Realization of bi-quinary coded decimal adder in quantum dot cellular automata, 353
Gladshtein, 2005, Selection of fundamental information principles for the construction of a universal digital nanocomputer, Autom. Control Comput. Sci., 39, 1
Gladshtein, 2006, Improving the structure of a serial decimal processor element for a universal digital nanocomputer, Autom. Control Comput. Sci., 40, 1
Gladshtein, 2011, Quantum-dot cellular automata serial decimal adder, IEEE Trans. Nanotechnol., 10, 1377, 10.1109/TNANO.2011.2138714
Gladshtein, 2012, Quantum-dot cellular automata serial decimal subtractors, Autom. Control Comput. Sci., 46, 239, 10.3103/S0146411612060041
Gladshtein, 2013, Design and simulation of novel adder/subtractors on quantum-dot cellular automata: radical departure from boolean logic circuits, Microelectron. J., 44, 545, 10.1016/j.mejo.2013.03.013
José, 2002, Fortes, Nanocomputing with delays, Proceed. IEEE Int. Conf. Appl.-Specif. Syst., Archit. Process. (ASAP’02), 3
Davis, 2004, Delay-based computing implementation issues in CMOS and nanotechnologies, Ph.D. Dissertation, Grad. Sch. Univ. Florida
Gladshtein, 2014, Delay-based processing-in-wire for design of QCA serial decimal arithmetic units, ACM J. Emerg. Technol. Comput. Syst., 10, 10.1145/2564927
Hartenstein, 2011, The relevance of reconfigurable computing, 7
Gladshtein, 2016, Quantum-dot cellular automata serial decimal processing-in-wire: Run-time reconfigurable wiring approach, Microelectron. J., 55, 152, 10.1016/j.mejo.2016.07.009
Liu, 2013
Navi, 2012, Well-polarized quantum-dot cellular automata inverters, Int. J. Comput. Appl., 58, 10
Asfestani, 2017, A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures, Physica B, 512, 91, 10.1016/j.physb.2017.02.028
Safoev, 2017, QCA XOR gate for arithmetic and logic circuit design, Proceed. 103rd IIER Int. Conf., 8
Turing, 1936, On computable numbers, with an application to the entscheidungsproblem, Proc. London Math. Society, 2-42, 230
Minsky, 1967, Computation, finite and infinite machines, Prentice-Hall, N. J., USA
Moore, 1952, A simplified universal Turing machine, Proceed. ACM (September 8-10, 50
Shannon, 1956, A universal Turing machine with two internal states, automata studies, Ann. Math. Stud., 34, 157
Aspray, 1989, John von Neumann's contributions to computing and computer science. IEEE Ann. Hist, Comput, 11, 189
Stuart, 2013
Shapiro, 2006, Bringing DNA computers to life, Sci. Am., 5, 45
Varghese, 2015, Molecular computing: paths to chemical Turing machines, Chem. Sci., 6, 6050, 10.1039/C5SC02317C
Touch, 2017, Digital optical processing of optical communications: towards an optical Turing machine, Nanophotonics, 6, 507, 10.1515/nanoph-2016-0145
Patterson, 2014, Computer organization and design: the hardware/software interface, 5th edition, Elsevier
C.S. Lent, G.L. Snider, The development of quantum-dot cellular automata, in: N.G. Anderson and S. Bhanja (Eds.): field-coupled nanocomputing, springer-VERLAG Berlin Heidelberg, 2014, pp. 3–20.
Janez, 2012, Layout design of manufacturable quantum-dot cellular automata, Microelectron. J., 43, 501, 10.1016/j.mejo.2012.03.007
Gin, 1999, An alternative geometry for quantum-dot cellular automata, J. Appl. Phys., 85, 8281, 10.1063/1.370670
Eichwald, 2013, Towards a signal crossing in double-layer nanomagnetic logic, IEEE Trans, Magnetics, 49, 4468, 10.1109/TMAG.2013.2238898
Roohi, 2015, Wire crossing constrained QCA circuit design using bilayer logic decomposition, Electron. Lett., 51, 1677, 10.1049/el.2015.2622
Frost, 2004, Carbon nanotubes for quantum-dot cellular automata clocking,, Proceed. 4th IEEE Conf. Nanotechnol., Munich, Germany, 171
Liu, 2014, A first step toward cost functions for quantum-dot cellular automata designs, IEEE Trans. Nanotechnol., 13, 476, 10.1109/TNANO.2014.2306754
Vankamamidi, 2008, Two-dimensional schemes for cocking/timing of QCA circuits, IEEE Trans. Comput. Aided Des. Integr. Circ. Syst., 27, 34, 10.1109/TCAD.2007.907020
Niemier, 2001, Problems in designing with QCAs: layout = timing, Int. J. Circ. Theor. Appl., 29, 49, 10.1002/1097-007X(200101/02)29:1<49::AID-CTA132>3.0.CO;2-1
Campos, 2016, USE: A universal, scalable, and efficient clocking scheme for QCA, IEEE Trans, IEEE Trans. Comput. Aided Des. Integrated Circuits Syst., 35, 513, 10.1109/TCAD.2015.2471996
Deng, 2020, CFE: a convenient, flexible, and efficient clocking scheme for quantum-dot cellular automata, IET circuits, Dev. Syst., 14, 88