Design and optimization of isolated energy systems through pinch analysis

Asia-Pacific Journal of Chemical Engineering - Tập 6 Số 3 - Trang 518-526 - 2011
Santanu Bandyopadhyay1
1Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai,#R#400076, India

Tóm tắt

AbstractIsolated energy systems seem to be a promising option for electrifying remote locations where grid extension is not feasible or economical. Integration of battery bank as means of energy storage with different renewable energy systems can enhance the system reliability and its overall performance. Therefore, appropriate choices of generator sizes and the battery bank capacity are critical to the success of such renewable‐based isolated power systems. In this article, the tools of pinch analysis are extended to design isolated renewable energy systems. The importance of setting targets before design is highlighted for designing renewable‐based isolated energy systems. The system sizing through the grand composite curve (GCC) representation of stored energy is proposed in this article. The set of all feasible solutions, defined as the design space for the system, is graphically represented for in‐depth visualization. The relation between the design space approach for designing and optimizing an isolated energy system and the principles of pinch analysis have been established in this article. The GCC representation also provides opportunity to the system designer for strategic load growth without affecting the system size. Copyright © 2011 Curtin University of Technology and John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

Brundtland. G.H., 1987, Our Common Future

10.1016/S0973-0826(08)60553-0

Willis H.L., 2000, Distributed Power Generation Planning and Evaluation

J.Cust A.Singh K.Neuhoff.Rural electrification in India: economic and institutional aspects of renewables 2007.

10.1016/j.rser.2007.01.008

10.1787/weo-2006-en

Linnhoff B., 1982, User Guide on Process Integration for the Efficient Use of Energy

El‐Halwagi. M.M., 2006, Process Integration

10.1016/0009-2509(94)80006-5

10.1021/ie060268k

10.1016/j.ces.2007.07.031

10.1205/026387602760312791

10.1016/j.cej.2006.08.007

10.1205/026387696523139

10.1205/026387600527185

10.1016/j.solener.2006.12.003

10.1016/j.solener.2008.02.011

10.1016/j.enconman.2008.09.019

10.1016/j.energy.2008.02.008

10.1021/ie8014236

10.1016/j.solener.2009.01.003

10.1016/j.apenergy.2009.04.032

10.1016/j.apenergy.2010.03.027

10.1016/j.enpol.2004.06.006

10.1016/S0960-1481(02)00154-4

Sandia National Lab.2008;http://photovoltaics.sandia.gov/docs/Wkshts1‐5.html accessed December 2008.

10.1016/0038-092X(84)90005-7

10.1016/0306-2619(84)90044-8

10.1016/0379-6787(86)90030-X

10.1016/S0038-092X(84)80037-7

10.1016/0960-1481(96)00017-1

Sukhatme. S.P., 1997, Solar Energy‐principles of Thermal Collections and Storage

10.1002/(SICI)1099-114X(199705)21:6<465::AID-ER273>3.0.CO;2-L

10.1016/S0960-1481(98)00796-4

Dunnett S., 2001, Small Wind Systems for Battery Charging—A Guide for Development Workers

10.1002/er.670

10.1016/S0306-2619(03)00101-6

10.1016/0038-092X(81)90114-6

10.1109/60.326466

10.1016/j.solener.2006.06.010

10.1016/j.enpol.2007.06.020

Wilson R.E., 1974, Applied Aerodynamics of Wind Power Machines

10.1115/1.3268110

10.1016/j.renene.2004.12.004

10.1115/1.556278

10.1016/0038-092X(78)90153-6