Design and experimental evaluation of a low-complexity spatial combiner for LTE distributed antenna systems
Tóm tắt
This article presents a distributed antenna system (DAS) architecture for small-cell base stations (BTSs), whereby cooperation between the DAS infrastructure and the BTS allows for an increase in performance compared to conventional systems, while at the same time keeping complexity and cost at low levels. Specifically, the article investigates the improvements in uplink physical layer performance achieved by adding an initial antenna combining step in the DAS system before conventional combining and equalization at the BTS. This initial step can be implemented in a very low-complexity fashion by performing all operations in the time domain and using channel state information calculated at the BTS itself. The article presents this technique in the context of an LTE DAS system. Results from both a software simulator and a custom-made hardware prototype are presented, establishing the feasibility of the proposed architecture.
Tài liệu tham khảo
Li Q, Li G, Lee W, Lee M, Mazzarese D, Clerckx B, Li Z: MIMO techniques in WiMAX and LTE: a feature overview. IEEE Commun. Mag 2010, 48(5):86-92.
Andrews J, Choi W, Heath R: Overcoming interference in spatial multiplexing MIMO cellular networks. IEEE Wirel. Commun. Mag 2007, 14(6):95-104.
Spencer QH, Swindlehurst AL, Haardt M: Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Trans. Signal Process 2004, 52(2):461-471. 10.1109/TSP.2003.821107
Park SG, Ryu BH, Kim DY: Uplink multi-point reception effect using aggregate base station architecture. In Proceedings of IEEE International Conference on ICT Convergence (ICTC). Korea: Seoul; 2011:172-176.
Pato S, Pedro J, Santos J, Arsénio A, Inácio P, Monteiro P: On building a distributed antenna system with joint signal processing for next-generation wireless access networks: the FUTON approach. In Proceedings of the Instituto de Telecomunicações Conference on Telecommunication (ConfTele). Portugal: Santa Maria de Feira; 2009.
Li H, Hajipour J, Attar A, Leung V: Efficient HetNet implementation using broadband wireless access with fiber-connected massively distributed antennas architecture. IEEE Wirel. Commun 2011, 18(3):72-78.
Crisp MJ, Li S, Watts A, Penty RV, White IH: Uplink and downlink coverage improvements of 802.11g signals using a distributed antenna network. J. Lightw. Technol 2007, 25(11):3388-3395.
Wake D, Nkansah A, Gomes NJ: Radio over fiber link design for next generation wireless systems. J. Lightw. Technol 2010, 28(16):2456-2464.
3GPP TR 36211 v890: E-UTRA physical channels and modulation. 2009.http://www.3gpp.org/ftp/Specs/archive/36_series/36.211/36211-890.zip []
Strang G: Linear Algebra and Its Applications. San Diego, USA: Harcourt Brace Jovanovich; 1986.
Kyösti P, Meinilä J, Hentilä L, Zhao X, Jämsä T, Schneider C, Narandzic M, Milojevic M, Hong A, Ylitalo J, Holappa VM, Alatossava M, Bultitude R, de Jong Y, Rautiainen T: WINNER II channel models. 2007.http://www.ist-winner.org/WINNER2-Deliverables/D1.1.2v1.1.pdf []