Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata

Nano Communication Networks - Tập 16 - Trang 1-9 - 2018
Saeid Seyedi1, Nima Jafari Navimipour2
1Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Tài liệu tham khảo

Siccardi, 2015, Actin quantum automata: communication and computation in molecular networks, Nano Commun. Netw., 6, 15, 10.1016/j.nancom.2015.01.002 Das, 2017, Nanocommunication network design using QCA reversible crossbar switch, Nano Commun. Netw., 13, 20, 10.1016/j.nancom.2017.06.003 Debnath, 2017, Design of image steganographic architecture using quantum-dot cellular automata for secure nanocommunication networks, Nano Commun. Netw. M.R. Azghadi, O. Kavehie, K. Navi, A novel design for quantum-dot cellular automata cells and full adders, 2012. arXiv preprint arXiv:1204.2048. Farazkish, 2008, New method for decreasing the number of quantum dot cells in QCA circuits, World Appl. Sci. J., 6, 793 Dalui, 2010, Fault tolerant QCA logic design with coupled majority–minority gate, Int. J. Comput. Appl, 1, 81 Cho, 2007, Adder designs and analyses for quantum-dot cellular automata, IEEE Trans. Nanotechnol., 6, 374, 10.1109/TNANO.2007.894839 Banu, 2017 Wei, 2005, Fault tolerant quantum cellular array (QCA) design using triple modular redundancy with shifted operands, 1192 Tahoori, 2004, Defects and faults in quantum cellular automata at nano scale, 291 Navi, 2009, Two new low-power full adders based on majority-not gates, Microelectron. J., 40, 126, 10.1016/j.mejo.2008.08.020 Farazkish, 2014, A new quantum-dot cellular automata fault-tolerant five-input majority gate, J. Nanopart. Res., 16, 2259, 10.1007/s11051-014-2259-8 Farazkish, 2015, A new quantum-dot cellular automata fault-tolerant full-adder, J. Comput. Electron., 14, 506, 10.1007/s10825-015-0668-2 Hashemi, 2013, New quantum dot cellular automata cell arrangements, J. Comput. Theor. Nanosci., 10, 798, 10.1166/jctn.2013.2773 Navi, 2010, A new quantum-dot cellular automata full-adder, Microelectron. J., 41, 820, 10.1016/j.mejo.2010.07.003 Das, 2017, Circuit switching with quantum-dot cellular automata, Nano Commun. Netw., 14, 16, 10.1016/j.nancom.2017.09.002 Zhang, 2004, A method of majority logic reduction for quantum cellular automata, IEEE Trans. Nanotechnol., 3, 443, 10.1109/TNANO.2004.834177 Lent, 1997, A device architecture for computing with quantum dots, Proc. IEEE, 85, 541, 10.1109/5.573740 Fijany, 2003 Tougaw, 1994, Logical devices implemented using quantum cellular automata, J. Appl. Phys., 75, 1818, 10.1063/1.356375 Seyedi, 2017, A three levels line-based full adder designing based on nano scale quantum-dot cellular automata, Optik - Int. J. Light Electron Opt., 5 Soniya, 2017 Cho, 2009, Adder and multiplier design in quantum-dot cellular automata, IEEE Trans. Comput., 58, 721, 10.1109/TC.2009.21 Bennett, 1973, Logical reversibility of computation, IBM j. Res. Dev., 17, 525, 10.1147/rd.176.0525 Landauer, 1961, Irreversibility and heat generation in the computing process, IBM J. Res. Dev., 5, 183, 10.1147/rd.53.0183 Bhanja, 2008, 227 Walus, 2006, Design tools for an emerging SoC technology: quantum-dot cellular automata, Proc. IEEE, 94, 1225, 10.1109/JPROC.2006.875791 Crocker, 2008, Molecular QCA design with chemically reasonable constraints, ACM J. Emerg. Technol. Comput. Syst., 4, 9, 10.1145/1350763.1350769 Gin, 1999, An alternative geometry for quantum-dot cellular automata, J. Appl. Phys., 85, 8281, 10.1063/1.370670 Shin, 2014, Design of wire-crossing technique based on difference of cell state in quantum-dot cellular automata, Int. J. Control Autom., 7, 153, 10.14257/ijca.2014.7.4.14 Roohi, 2015, Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder, Microelectron. J., 46, 531, 10.1016/j.mejo.2015.03.023 Kumar, 2016, Design of a practical fault-tolerant adder in QCA, Microelectron. J., 53, 90, 10.1016/j.mejo.2016.04.004 Farazkish, 2015, Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata, Microprocess. Microsyst., 39, 426, 10.1016/j.micpro.2015.04.004 Wang, 2003, Quantum-dot cellular automata adders, 461 Chabi, 2014, Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach Kyosun, 2006, Quantum-dot cellular automata design guideline, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 89, 1607 Walus, 2004, QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata, IEEE Trans. Nanotechnol., 3, 26, 10.1109/TNANO.2003.820815 K. Walus, G. Schulhof, QCA Designer homepage, 2002. Online http://www.qcadesigner.ca. Walus, 2002 Hanninen, 2007, Robust adders based on quantum-dot cellular automata,, 391 Zhang, 2005, Performance comparison of quantum-dot cellular automata adders, 2522 Pudi, 2012, Low complexity design of ripple carry and Brent–Kung adders in QCA, IEEE Trans. Nanotechnol., 11, 105, 10.1109/TNANO.2011.2158006 Sen, 2013, Design of efficient full adder in quantum-dot cellular automata, Sci. World J., 2013, 10.1155/2013/250802 Pudi, 2012, New decomposition theorems on majority logic for low-delay adder designs in quantum dot cellular automata, IEEE Trans. Circuits Syst. II: Express Briefs, 59, 678, 10.1109/TCSII.2012.2213356