Design and construction of a multifunction piezoelectric transformer

Journal of the Australian Ceramic Society - Tập 55 - Trang 19-24 - 2018
Adil Eddiai1, Mounir Meddad2, Mohamed Rguiti3, Aïda Chérif2, Christian Courtois3
1Laboratoire de Physique de la Matière Condensée, Faculté des Sciences Ben M’sik, Université Hassan II de Casablanca, Casablanca, Morocco
2Université Bachir El Ibrahimi BBA, Bordj Bou Arreridj, Algeria
3EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Université de Valenciennes, Valenciennes, France

Tóm tắt

In recent years, piezoelectric materials have particularly found advantageous field of application in electrical energy’s conversion. Especially, the piezoelectric transformers are becoming more and more usable in electrical devices owing to several advantages such as small size, high efficiency, no electromagnetic noise, and non-flammability. The purpose of this study was to investigate a transformer design that allows having multi-functionality with different efficiency and wider range of voltage gain at resonance frequency. The piezoelectric transformer construction utilizes radial mode both at the input and output port and has the unidirectional polarization in the ceramics. An electromechanical equivalent circuit model based on Mason’s equivalent circuit was developed so as to describe the characteristics of the piezoelectric transformer. Excellent matching was found between the simulation data and experimental results. Finally, the results of this study will allow to deterministically designing multifunction piezoelectric transformers with specified performance.

Tài liệu tham khảo

Hemsel, T., Priya, S.: Model based analysis of piezoelectric transformers. Ultrasonics. 44, 741–745 (2006) Sasaki, Y., Yamamoto, M., Ochi, A., Inoue, T., Takahashi, S.: Small multilayer piezoelectric transformers with high power density—characteristics of second and third-mode Rosen-type transformers. Jpn J Appl Phys. 38, 5598–5602 (1999) Horsley, E.L., Carazo, A.V., Nguyen-Quang, N., Foster, M.P., Stone, D.A.: Analysis of inductorless zero-voltage-switching piezoelectric transformer-based converters. IEEE Trans Power Electron. 27, 2471–2483 (2012) Boukazouha, F., Boubenider, F.: Piezoelectric transformer: comparison between a model and an analytical verification. Comput Struct. 86, 374–378 (2008) Jurisic, B., Uglesic, I., Xemard, A., Paladian, F.: High frequency transformer model derived from limited information about the transformer geometry. Electr Power Energy Syst. 94, 300–310 (2018) Jabbar, H., Jung, H.J., Chen, N., Cho, D.H., Sung, T.H.: Piezoelectric energy harvester impedance matching using a piezoelectric transformer. Sensors Actuators A. 264, 141–150 (2017) Yang, J.S., Zhang, X.: Extensional vibration of a nonuniform piezoceramic rod and high voltage generation. Int J Appl Electromagn Mech. 16, 29–42 (2002) Rosen C. A.: Electromechanical transducer. U.S. patent 2974296, Mar 7 (1961) Kanayama, K., Maruko, N., Saigoh, H.: Development of the multilayer alternately poled piezoelectric transformers. Jpn J Appl Phys. 37, 2891–2895 (1998) Zaitsu, T., Inoue, T., Ohnishi, O., Sasaki, Y.: 2 MHz power converter with piezoelectric ceramic transformer. Inst Electron Inform Commun Eng Trans Electron. E77-C, 280–286 (1994) Ohnishi, O., Sasaki, Y., Zaitsu, T., Kishie, H., Inoue, T.: Piezoelectric ceramic transformer for power supply operating in thickness extensional vibration mode. Inst Electron Inform Commun Eng Trans Electron. E77-A, 2098–2105 (1994) Nadal, C., Pigache, F.: Multimodal electromechanical model of piezoelectric transformers by Hamilton’s principle. IEEE Trans Ultrason Ferroelectr Freq Control. 56, 2530–2543 (2009) Chérif, A., Richard, C., Guyomar, D., Belkhiat, S., Meddad, M., Eddiai, A., Hajjaji, A.: Improvement of piezoelectric transformer performances using SSHI and SSHI-max methods. Opt Quant Electron. 46, 117–131 (2014) Guo, M., Lam, K., Lin, D., Wang, S., Kwok, K.: A Rosen-type piezoelectric transformer employing lead-free K0.5Na0.5NbO3 ceramics. J Mater Sci. 43, 709–714 (2008) Du, J., Hu, J., Tseng, K.J., Kai, C.S., Siong, G.C.: Modeling and analysis of dual-output piezoelectric transformer operating at the thickness-shear vibration mode. IEEE Trans Ultrason Ferroelectr Freq Control. 53, 579–585 (2006) Jarrousse, J.M., Costa, F., Vasic D., Sarraute, E.: Low-power high-voltage DC-DC converter based on a PZT transformer. 10th European Conference on Power Electronics and Applications EPE 2003, Toulouse, France Yang, J.S., Zhang, X.: Analysis of a thickness-shear piezoelectric transformer. Int J Appl Electromagn Mech. 21, 131–141 (2005) Lin, R.L., Baker, E., Lee, F.C.: Transoner characterization. First Quarterly Progress Report, ELC-99-007, August 28, (1999) Huang, Y., Huang, W.: An improved equivalent circuit model of radial mode piezoelectric transformer. IEEE Trans Ultrason Ferroelectr Freq Control. 58, 1069–1076 (2011) Tachafine, A., Aoujgal, A., Rguiti, M., Graça, M.P.F., Costa, L.C., Outzourhit, A., Carru, J.-C.: Classical and relaxor ferroelectric behavior of titanate of barium and zirconium ceramics. Spectrosc Lett. 47, 404–410 (2014) Courtois, C., Devemy, S., Champagne, P., Lippert, M., Rguiti, M., Leriche, A., Chateigner, D., Guilmeau, E.: Comparison of two molten flux process for the elaboration of textured PZT thin plates. J Eur Ceram Soc. 27, 3779–3783 (2007) Cherif, A., Meddad, M., Belkhiat, S.: Radial piezoelectric transformer study. International journal of sciences and techniques of automatic control & computer engineering, special issue, CEM 566–579 (2008)