Design and Characterization of Type I Cellulose-Polyaniline Composites from Various Cellulose Sources: A Comparative Study
Tóm tắt
Từ khóa
Tài liệu tham khảo
Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. J Phys Chem B 105(36):8475–8491
Jangid NK, Jadoun S, Kaur N (2020) A review on high-throughput synthesis, deposition of thin films and properties of polyaniline. Eur Polym 125:109485
Le TH, Kim Y, Yoon H (2017) Electrical and electrochemical properties of conducting polymers. Polym 9:150–182
Cherusseri J, Pramanik S, Sowntharya L, Pandey D, Kar KK, Sharma SD (2017) Polymer-based composite materials: characterizations. In: Kar KK (ed) Composite materials: processing, applications, characterizations. Springer, Berlin
Nynaru V, Jayamani E, Srinivasulu M, Han ECW, Bin Bakri MK (2019) Short review on conductive polymer composites as functional materials. Key Eng Mater 796:17–21
Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55:829–892
Shukla SK, Rizwana BA, Dubey GC (2019) Micro-cellulose sheet and polyvinyl alcohol blended film for active packaging. Chem Afr 2(4):723–732
Tayeb P, Tayeb AH (2019) Nanocellulose applications in sustainable electrochemical and piezoelectric systems: a review. Carbohydr Polym 224:115149
Zhang H, Dou C, Pal L, Hubbe MA (2019) Review of electrically conductive composites and films containing cellulosic fibers or nanocellulose. BioResources 14(3):7494–7542
Pérez S, Samain D (2010) Structure and engineering of celluloses. Adv Carbohydr Chem Biochem 64:25–116
Eslahi N, Mahmoodi A, Mahmoudi N, Zandi N, Simchi A (2020) Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications. Polym Rev 60(1):144–170
Alonso E, Faria M, Mohammadkazemi F, Resnik M, Ferreira A, Cordeiro N (2018) Conductive bacterial cellulose-polyaniline blends: Influence of the matrix and synthesis conditions. Carbohydr Polym 183:254–262
Fei G, Wang Y, Wang H, Ma Y, Guo Q, Huang W, Yang D, Shao Y, Ni Y (2019) Fabrication of bacterial cellulose/polyaniline nanocomposite paper with excellent conductivity, strength, and flexibility. ACS Sustain Chem Eng 7(9):8215–8225
Jasim A, Ullah MW, Shi Z, Lin X, Yang G (2017) Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydr Polym 163:62–69
Essaddam H (2015) Process for isolating cellulose from cellulosic biomass, isolated cellulose of type i and composite materials comprising same. EP2948589A4, European Patent.
Gruber E, Gruber R (1981) Viskosimetrische Bestimmung des polymerisations grades von cellulose. Das papier 35(4):133–141
Katz S, Beatson RP (1984) The determination of strong and weak acidic groups in sulfite pulps. Sven Papperstidn 87(6):48–53
Segal L, Creely J, Martin J, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Tex Res J 29(10):786–794
Newman RH, Ha M-A, Melton LD (1994) Solid-state 13C NMR investigation of molecular ordering in the cellulose of apple cell walls. J Agric Food Chem 42(7):1402–1406
Khiari R, Mauret E, Belgacem MN, Mhenni MF (2011) Tunisian date palm rachis used as an alternative source of fibres for papermaking applications. BioResources 6(1):265–281
Laine J, Stenius P (1995) Surface properties of bleached kraft pulp fibers and their comparison with the properties of the final paper products. Eighth International Symposium on Wood Pulping Chemistry, Helsinki 589–596.
Mohite BV, Patil SV (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydr Polym 106:132–141
Tissera ND, Wijesena RN, Rathnayake S, de Silva RM, de Silva KMN (2018) Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on cotton textiles: improved electrical conductivity, electrical switching, and tuning properties. Carbohydr Polym 186:35–44
Shi Z, Zang S, Jiang F, Huang L, Lu D, Ma Y, Yang G (2012) In situ nano-assembly of bacterial cellulose–polyaniline composites. RSC Adv 2(3):1040–1046
Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl 15:1–19
Kirui A, Ling Z, Kang X, Widanage MCD, Mentink-Vigier F, French AD, Wang T (2019) Atomic resolution of cotton cellulose structure enabled by dynamic nuclear polarization solid-state NMR. Cellulose 26(1):329–339
Razalli RL, Abdi Mahnaz M, Tahir PM, Moradbak A, Sulaiman Y, Heng LY (2017) Polyaniline-modified nanocellulose prepared from Semantan bamboo by chemical polymerization: preparation and characterization. RSC Adv 7(41):25191–25198
Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang W (2012) Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J Phys Chem C 116(24):13013–13019
Ilharco LM, Garcia AR, Lopes da Silva J, Vieira Ferreira LJL (1997) Infrared approach to the study of adsorption on cellulose: influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir 13(15):4126–4132
Dayal MS, Catchmark JM (2016) Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr Polym 144:447–453
Marins JA, Soares BG, Dahmouche K, Ribeiro SJL, Barud H, Bonemer D (2011) Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18(5):1285–1294
Bober P, Kovářová J, Pfleger J, Stejskal J, Trchová M, Novák I, Berek D (2016) Twin carbons: the carbonization of cellulose or carbonized cellulose coated with a conducting polymer, polyaniline. Carbon 109:836–842