Design Strategy for Porous Composites Aimed at Pressure Sensor Application

Small - Tập 15 Số 45 - 2019
Zhen Sang1, Kai Ke1, Ica Manas‐Zloczower1
1Department of Macromolecular Science and Engineering Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106-7202 USA

Tóm tắt

AbstractFlexible and highly sensitive pressure sensors have versatile biomedical engineering applications for disease diagnosis and healthcare. The fabrication of such sensors based on porous structure composites usually requires complex, costly, and nonenvironmentally friendly procedures. As such, it is highly desired to develop facile, economical, and environment‐friendly fabrication strategies for highly sensitive lightweight pressure sensors. Herein, a novel design strategy is reported to fabricate porous composite pressure sensors via a simple heat molding of conductive fillers and thermoplastic polyurethane (TPU) powders together with commercially available popcorn salts followed by water‐assisted salt removal. The obtained TPU/carbon nanostructure (CNS) foam sensors have a linear resistance response up to 60% compressive strain with a gauge factor (GF) of 1.5 and show reversible and reproducible piezoresistive properties due to the robust electrically conductive pathways formed on the foam struts. Such foam sensors can be potentially utilized for guiding squatting exercises and respiration rate monitoring in daily physical training.

Từ khóa


Tài liệu tham khảo

10.1002/adfm.201400379

10.1002/adhm.201400546

10.1038/ncomms4132

10.1021/acsami.8b15809

10.1002/adfm.201808829

10.1016/S0924-4247(01)00753-1

10.1021/nl802497e

10.1016/j.sna.2007.04.002

10.1021/nl5005652

10.1039/C4MH00147H

10.1039/C4NR03295K

10.1002/adfm.201601995

10.1002/adfm.201502960

10.1016/j.carbon.2018.08.028

10.1016/j.carbon.2012.04.056

10.1038/ncomms6028

10.1002/adma.201502535

10.1002/adma.201305182

10.1039/C9TA04352G

10.1002/adfm.201504755

10.1038/nmat2834

10.1186/1743-0003-9-21

10.1021/acsami.7b16975

10.1021/acsami.8b02322

10.1016/j.msec.2018.05.023

10.1021/acsnano.5b02781

10.1039/C4NR04360J

10.1039/C6TC03713E

10.1002/adma.201303041

10.1016/j.compscitech.2019.107678

10.1016/j.compscitech.2015.01.006

10.1021/acsami.6b08172

10.1021/acsami.5b01608

10.1002/smll.201702091

10.1088/0022-3727/39/3/018

10.1016/j.polymdegradstab.2005.10.009

10.1002/adfm.201501000

10.1002/smll.201403532

10.1039/c2jm30590a

10.1016/j.cej.2019.01.142

10.1016/j.compositesa.2015.02.003

10.1039/C5NR00841G

10.1039/C7NR08077H

10.1063/1.4794143

10.1039/C5NR00313J

10.3390/s16122148

10.1038/nmat3001

10.1021/acsami.7b01017

10.1038/nnano.2011.184

10.1021/am200021v

10.1557/jmr.2013.218

10.1080/03602559.2017.1329433

10.1016/j.progpolymsci.2013.11.002

10.1002/adma.201302406

10.1016/j.compscitech.2018.05.044

Liu H., 2016, Appl. Phys. Lett., 108, 918

10.1002/adma.201204576

10.1021/je049922y

10.1021/am201352w

10.1021/acsami.8b14573

10.1002/mame.201900278

10.1021/acsapm.8b00241

10.1039/C5TA06452J

10.1002/adma.201400657

10.3390/ma10121353

10.1016/j.ijfatigue.2013.09.012

Gibson L. J., 1999, Cellular Solids: Structure and Properties

10.1017/CHOL9780521441957

10.1016/j.compositesa.2019.03.007

10.1039/C9NA00176J

10.1016/j.compscitech.2017.06.027

10.1016/j.compscitech.2018.10.022

10.1021/nn100114d

10.1002/adfm.201900554

10.1519/JSC.0b013e318267918b

Fry A. C., 2003, J. Strength Cond. Res., 17, 629

10.1016/j.carbon.2018.06.037