Description of singularities for system “billiard in an ellipse”

Moscow University Mathematics Bulletin - Tập 67 Số 5-6 - Trang 217-220 - 2012
V. V. Fokicheva1
1Faculty of Mechanics and Mathematics, Moscow State University, Leninskie Gory, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

V. Dragovic and M. Radnovic, “Bifurcations of Liouville Tori in Elliptical Billiards,” arXiv: 0902.4233v2.

V. Dragovic and M. Radnovic, Integrable Billiards, Quadrics, and Multidimensional Poncelet Porisms (NITs Regular and Chaotic Dynamics, Moscow, Izhevsk, 2010) [in Russian].

V. V. Kozlov and D. V. Treshchev, Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts (Moscow State Univ., Moscow, 1991; Transl. of Math. Monographs, vol. 89. Providence, RI: Amer. Math. Soc., 1991).

A. V. Bolsinov and A. T. Fomenko, “Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent to the Integrable Euler Case in Rigid Body Dynamics,” Funk. Analiz i Prilozh. 29(3), 1 (1995) [Func. Anal. and Appl. 29 (3), 149 (1995)].

V. I. Arnol’d, Mathematical Methods of Classic Mechanics (Nauka, Moscow, 1974; Springer, N.Y., 1978).

A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems. Geometry, Topology, Classification, Vol. 1,2 (RKhD, Izhevsk, 1999; CRC Press, Boca Raton, 2004).

A. T. Fomenko and H. Zieschang, “On Typical Topological Properties of Integrable Hamiltonian Systems,” Izvestiya Akad. Nauk SSSR, Ser. Matem. 52(2), 378 (1988) [Math. of the USSR-Izvestiya 32 (2), 385 (1989)].

A. T. Fomenko, “The Symplectic Topology of Completely Integrable Hamiltonian Systems,” Uspekhi Matem. Nauk 44(1), 145 (1989) [Russian Math. Surveys 44 (1), 181 (1989)].

A. T. Fomenko and H. Zieschang, “A Topological Invariant and a Criterion for the Equivalence of Integrable Hamiltonian Systems with Two Degrees of Freedom,” Izvestiya Akad. Nauk SSSR, Ser. Matem. 54(3), 546 (1990) [Math. of the USSR-Izvestiya 36 (3), 567 (1991)].

E. Gutkin, “Billiard Dynamics: a Survey with the Emphasis on Open Problems,” Regular and Chaotic Dynamics 8(1), 1 (2003).