Description of singularities for system “billiard in an ellipse”
Tóm tắt
Từ khóa
Tài liệu tham khảo
V. Dragovic and M. Radnovic, “Bifurcations of Liouville Tori in Elliptical Billiards,” arXiv: 0902.4233v2.
V. Dragovic and M. Radnovic, Integrable Billiards, Quadrics, and Multidimensional Poncelet Porisms (NITs Regular and Chaotic Dynamics, Moscow, Izhevsk, 2010) [in Russian].
V. V. Kozlov and D. V. Treshchev, Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts (Moscow State Univ., Moscow, 1991; Transl. of Math. Monographs, vol. 89. Providence, RI: Amer. Math. Soc., 1991).
A. V. Bolsinov and A. T. Fomenko, “Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent to the Integrable Euler Case in Rigid Body Dynamics,” Funk. Analiz i Prilozh. 29(3), 1 (1995) [Func. Anal. and Appl. 29 (3), 149 (1995)].
V. I. Arnol’d, Mathematical Methods of Classic Mechanics (Nauka, Moscow, 1974; Springer, N.Y., 1978).
A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems. Geometry, Topology, Classification, Vol. 1,2 (RKhD, Izhevsk, 1999; CRC Press, Boca Raton, 2004).
A. T. Fomenko and H. Zieschang, “On Typical Topological Properties of Integrable Hamiltonian Systems,” Izvestiya Akad. Nauk SSSR, Ser. Matem. 52(2), 378 (1988) [Math. of the USSR-Izvestiya 32 (2), 385 (1989)].
A. T. Fomenko, “The Symplectic Topology of Completely Integrable Hamiltonian Systems,” Uspekhi Matem. Nauk 44(1), 145 (1989) [Russian Math. Surveys 44 (1), 181 (1989)].
A. T. Fomenko and H. Zieschang, “A Topological Invariant and a Criterion for the Equivalence of Integrable Hamiltonian Systems with Two Degrees of Freedom,” Izvestiya Akad. Nauk SSSR, Ser. Matem. 54(3), 546 (1990) [Math. of the USSR-Izvestiya 36 (3), 567 (1991)].