Description of k-bent functions in four variables

Journal of Applied and Industrial Mathematics - Tập 3 - Trang 284-289 - 2009
N. N. Tokareva1
1Sobolev Institute of Mathematics, Novosibirsk, Russia

Tóm tắt

A simple description is given of the class of 2-bent functions in four variables. This class consists of 384 quadratic functions with 12 distinct types of the quadratic part, which classifies all k-bent functions with at most four variables.

Tài liệu tham khảo

S. V. Agievich, “On the Representation of Bent-Functions by Bent-Rectangles,” in Fifth International Petrozavodsk Conference on Probabilistic Methods in Discrete Mathematics (Petrozavodsk, Russia, 2000), Proceedings (VSP, Boston, 2000), pp. 121–135 (also http://arxiv.org/abs/math/0502087v1). C. Carlet, “Boolean Functions for Cryptography and Error Correcting Codes,” in Boolean Methods and Models, Ed. by P. Hammer and Y. Crama (Cambridge Univ., Cambridge, to appear). D. S. Krotov, “ℤ4-Linear Perfect Codes,” Diskret. Analiz i Issled. Operatsii 7(4), 78–90 (2000) [English translation is available at http://arxiv.org/abs/0710.0198]. D. S. Krotov, “ℤ4-Linear Hadamard and Extended Perfect Codes,” in Proceedings of the International Workshop on Coding and Cryptography (Paris, 2001), pp. 329–334. O. A. Logachev, A. A. Sal’nikov, and V. V. Yashenko, Boolean Functions in Coding Theory and Cryptology (Center for the Uninterrupted Mathematical Education, Moscow, 2004) [in Russian]. F. J. MacWilliams and N. J. A. Sloane, Theory of Error Correcting Codes (Amsterdam, North-Holland, 1977). Q. Meng, M. C. Yang, and H. Zhang, “A Novel Algorithm Enumerating Bent Functions,” http://eprint.iacr.org, 2004/274. B. Preneel, Analysis and Design of Cryptographic Hash Functions PhD Thesis (Katholieke Univ. Leuven, Leuven, Belgium, 1993). O. Rothaus, “On Bent Functions,” J. Combin. Theory. Ser. A 20(3), 300–305 (1976). N. N. Tokareva, “Bent Functions with Stronger Nonlinear Properties: k-Bent Functions,” Diskret. Analiz i Issled. Operatsii 14(4), 76–102 (2007) [J. Appl. Indust. Math. 2 (4), 566–584 (2008)]. N. N. Tokareva, “On Quadratic Approximations in Block Ciphers,” Problemy Peredachi Informatsii 44(3), 105–127 (2008) [Problems Inform. Transmission 44 (3), 266–286 (2008)].