Derived categories of toric varieties III

European Journal of Mathematics - Tập 2 - Trang 196-207 - 2015
Yujiro Kawamata1
1Graduate School of Mathematical Sciences, University of Tokyo, Tokyo, Japan

Tóm tắt

We prove that the derived McKay correspondence holds for the cases of finite abelian groups and subgroups of $$\mathrm{GL}(2,\mathbf {C})$$ . We also prove that K-equivalent toric birational maps are decomposed into toric flops.

Tài liệu tham khảo

Ballard, M., Favero, D., Katzarkov, L.: Variation of geometric invariant theory quotients and derived categories (2012). arXiv:1203.6643 Bezrukavnikov, R.V., Kaledin, D.B.: McKay equivalence for symplectic resolutions of quotient singularities. Proc. Steklov Inst. Math. 246, 13–33 (2004) Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23(2), 405–468 (2010) Bondal, A., Orlov, D.: Derived categories of coherent sheaves. In: Tatsien, L. (ed.) Proceedings of the International Congress of Mathematicians (Beijing 2002), vol. II, pp. 47–56. Higher Education Press, Beijing (2002) Bridgeland, T.: Flops and derived categories. Invent. Math. 147(3), 613–632 (2002) Bridgeland, T., King, A., Reid, M.: The McKay correspondence as an equivalence of derived categories. J. Amer. Math. Soc. 14(3), 535–554 (2001) Cautis, S.: Equivalences and stratified flops. Compos. Math. 148(1), 185–208 (2012) Chen, J.-C.: Flops and equivalences of derived categories for threefolds with only terminal Gorenstein singularities. J. Differential Geom. 61(2), 227–261 (2002) Donovan, W., Segal, E.: Window shifts, flop equivalences and Grassmannian twists. Compos. Math. 150(6), 942–978 (2014) Halpern-Leistner, D.S.: Geometric Invariant Theory and Derived Categories of Coherent Sheaves. Ph.D. thesis, University of California, Berkeley. ProQuest LLC, Ann Arbor (2013) Ishii, A., Ueda, K.: The special McKay correspondence and exceptional collections (2011). arXiv:1104.2381 Kaledin, D.: Derived equivalences by quantization. Geom. Funct. Anal. 17(6), 1968–2004 (2008) Kawamata, Y.: Francia’s flip and derived categories. In: Beltrametti, M.C. et al. (eds.) Algebraic Geometry. De Gruyter Proceedings in Mathematics, pp. 197–215. De Gruyter, Berlin (2002) Kawamata, Y.: \(D\)-equivalence and \(K\)-equivalence. J. Differential Geom. 61(1), 147–171 (2002) Kawamata, Y.: Log crepant birational maps and derived categories. J. Math. Sci. Univ. Tokyo 12(2), 211–231 (2005) Kawamata, Y.: Derived categories of toric varieties. Michigan Math. J. 54(3), 517–535 (2006) Kawamata, Y.: Flops connect minimal models. Publ. Res. Inst. Math. Sci. 44(2), 419–423 (2008) Kawamata, Y.: Derived categories of toric varieties II. Michigan Math. J. 62(2), 353–363 (2013) Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal model problem. In: Oda, T. (ed.) Algebraic Geometry, Sendai, 1985. Advanced Studies in Pure Mathematics, vol. 10, pp. 283–360. North-Holland, Amsterdam (1987) Van den Bergh, M.: Three-dimensional flops and noncommutative rings. Duke Math. J. 122(3), 423–455 (2004)