Derived categories of toric varieties III
Tóm tắt
We prove that the derived McKay correspondence holds for the cases of finite abelian groups and subgroups of
$$\mathrm{GL}(2,\mathbf {C})$$
. We also prove that K-equivalent toric birational maps are decomposed into toric flops.
Tài liệu tham khảo
Ballard, M., Favero, D., Katzarkov, L.: Variation of geometric invariant theory quotients and derived categories (2012). arXiv:1203.6643
Bezrukavnikov, R.V., Kaledin, D.B.: McKay equivalence for symplectic resolutions of quotient singularities. Proc. Steklov Inst. Math. 246, 13–33 (2004)
Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23(2), 405–468 (2010)
Bondal, A., Orlov, D.: Derived categories of coherent sheaves. In: Tatsien, L. (ed.) Proceedings of the International Congress of Mathematicians (Beijing 2002), vol. II, pp. 47–56. Higher Education Press, Beijing (2002)
Bridgeland, T.: Flops and derived categories. Invent. Math. 147(3), 613–632 (2002)
Bridgeland, T., King, A., Reid, M.: The McKay correspondence as an equivalence of derived categories. J. Amer. Math. Soc. 14(3), 535–554 (2001)
Cautis, S.: Equivalences and stratified flops. Compos. Math. 148(1), 185–208 (2012)
Chen, J.-C.: Flops and equivalences of derived categories for threefolds with only terminal Gorenstein singularities. J. Differential Geom. 61(2), 227–261 (2002)
Donovan, W., Segal, E.: Window shifts, flop equivalences and Grassmannian twists. Compos. Math. 150(6), 942–978 (2014)
Halpern-Leistner, D.S.: Geometric Invariant Theory and Derived Categories of Coherent Sheaves. Ph.D. thesis, University of California, Berkeley. ProQuest LLC, Ann Arbor (2013)
Ishii, A., Ueda, K.: The special McKay correspondence and exceptional collections (2011). arXiv:1104.2381
Kaledin, D.: Derived equivalences by quantization. Geom. Funct. Anal. 17(6), 1968–2004 (2008)
Kawamata, Y.: Francia’s flip and derived categories. In: Beltrametti, M.C. et al. (eds.) Algebraic Geometry. De Gruyter Proceedings in Mathematics, pp. 197–215. De Gruyter, Berlin (2002)
Kawamata, Y.: \(D\)-equivalence and \(K\)-equivalence. J. Differential Geom. 61(1), 147–171 (2002)
Kawamata, Y.: Log crepant birational maps and derived categories. J. Math. Sci. Univ. Tokyo 12(2), 211–231 (2005)
Kawamata, Y.: Derived categories of toric varieties. Michigan Math. J. 54(3), 517–535 (2006)
Kawamata, Y.: Flops connect minimal models. Publ. Res. Inst. Math. Sci. 44(2), 419–423 (2008)
Kawamata, Y.: Derived categories of toric varieties II. Michigan Math. J. 62(2), 353–363 (2013)
Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal model problem. In: Oda, T. (ed.) Algebraic Geometry, Sendai, 1985. Advanced Studies in Pure Mathematics, vol. 10, pp. 283–360. North-Holland, Amsterdam (1987)
Van den Bergh, M.: Three-dimensional flops and noncommutative rings. Duke Math. J. 122(3), 423–455 (2004)