Derivation of neural crest cells from human pluripotent stem cells

Nature Protocols - Tập 5 Số 4 - Trang 688-701 - 2010
Gabsang Lee1, Stuart M. Chambers1, Mark Tomishima1, Lorenz Studer2
1Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
2Center for Stem Cell Biology, Sloan-Kettering Institute, New York, NY, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

Perrier, A.L. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 101, 12543–12548 (2004).

Li, X.J. et al. Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol. 23, 215–221 (2005).

Roy, N.S. et al. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med. 12, 1259–1268 (2006).

Lee, H. et al. Directed differentiation and transplantation of human embryonic stem cell derived motoneurons. Stem Cells 25, 1931–1939 (2007).

Lee, G. et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat. Biotechnol. 25, 1468–1475 (2007).

Pruszak, J., Sonntag, K.C., Aung, M.H., Sanchez-Pernaute, R. & Isacson, O. Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells 25, 2257–2268 (2007).

Elkabetz, Y. et al. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes. Dev. 22, 152–165 (2008).

Chambers, S.M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

Fuchs, S. & Sommer, L. The neural crest: understanding stem cell function in development and disease. Neurodegener. Dis. 4, 6–12 (2007).

Slaugenhaupt, S.A. et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am. J. Hum. Genet. 68, 598–605 (2001).

Farlie, P.G., McKeown, S.J. & Newgreen, D.F. The neural crest: basic biology and clinical relationships in the craniofacial and enteric nervous systems. Birth Defects Res. C Embryo Today 72, 173–189 (2004).

Wurdak, H., Ittner, L.M. & Sommer, L. DiGeorge syndrome and pharyngeal apparatus development. Bioessays 28, 1078–1086 (2006).

Etchevers, H.C., Amiel, J. & Lyonnet, S. Molecular bases of human neurocristopathies. Adv. Exp. Med. Biol. 589, 213–234 (2006).

Ross, R.A. & Spengler, B.A. Human neuroblastoma stem cells. Semin. Cancer. Biol. 17, 241–247 (2007).

Carniti, C. et al. The Ret(C620R) mutation affects renal and enteric development in a mouse model of Hirschsprung's disease. Am. J. Pathol. 168, 1262–1275 (2006).

Hims, M.M. et al. A humanized IKBKAP transgenic mouse models a tissue-specific human splicing defect. Genomics 90, 389–396 (2007).

Selleck, M.A. & Bronner-Fraser, M. The genesis of avian neural crest cells: a classic embryonic induction. Proc. Natl. Acad. Sci. USA 93, 9352–9357 (1996).

Crane, J.F. & Trainor, P.A. Neural crest stem and progenitor cells. Annu. Rev. Cell. Dev. Biol. 22, 267–286 (2006).

Dupin, E., Real, C. & Ledouarin, N. The neural crest stem cells: control of neural crest cell fate and plasticity by endothelin-3. An. Acad. Bras. Cienc. 73, 533–545 (2001).

Anderson, D.J. Genes, lineages and the neural crest: a speculative review. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 953–964 (2000).

Wong, C.E. et al. Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J. Cell. Biol. 175, 1005–1015 (2006).

Creuzet, S., Couly, G. & Le Douarin, N.M. Patterning the neural crest derivatives during development of the vertebrate head: insights from avian studies. J. Anat. 207, 447–459 (2005).

Kruger, G.M. et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron. 35, 657–669 (2002).

Motohashi, T., Aoki, H., Chiba, K., Yoshimura, N. & Kunisada, T. Multipotent cell fate of neural crest-like cells derived from embryonic stem cells. Stem Cells 25, 402–410 (2007).

Buchstaller, J. et al. Efficient isolation and gene expression profiling of small numbers of neural crest stem cells and developing Schwann cells. J. Neurosci. 24, 2357–2365 (2004).

Morrison, S.J., White, P.M., Zock, C. & Anderson, D.J. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–749 (1999).

Sauka-Spengler, T., Meulemans, D., Jones, M. & Bronner-Fraser, M. Ancient evolutionary origin of the neural crest gene regulatory network. Dev. Cell 13, 405–420 (2007).

Holland, L.Z. & Holland, N.D. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate? J. Anat. 199, 85–98 (2001).

Jiang, X. et al. Isolation and characterization of neural crest stem cells derived from in vitro-differentiated human embryonic stem cells. Stem. Cells. Dev. 18, 1059–1070 (2008).

Zhou, Y. & Snead, M.L. Derivation of cranial neural crest-like cells from human embryonic stem cells. Biochem. Biophys. Res. Commun. 376, 542–547 (2008).

Papapetrou, E.P. et al. Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proc. Natl. Acad. Sci. USA 106, 12759–12764 (2009).

Lee, G. et al. Modeling pathogenesis and treatment of familial dysautonomia using patient specific iPS cells. Nature 461, 402–406 (2009).

Nishikawa, S., Goldstein, R.A. & Nierras, C.R. The promise of human induced pluripotent stem cells for research and therapy. Nat. Rev. Mol. Cell. Biol. 9, 725–729 (2008).

Billon, N. et al. The generation of adipocytes by the neural crest. Development 134, 2283–2292 (2007).

Sandell, L.L. & Trainor, P.A. Neural crest cell plasticity. Size matters. Adv. Exp. Med. Biol 589, 78–95 (2006).

Barberi, T., Willis, L.M., Socci, N.D. & Studer, L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2, e161 (2005).

Etchevers, H.C., Vincent, C., Le Douarin, N.M. & Couly, G.F. The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128, 1059–1068 (2001).

Noden, D.M. & Trainor, P.A. Relations and interactions between cranial mesoderm and neural crest populations. J. Anat. 207, 575–601 (2005).

Placantonakis, D.G. et al. BAC transgenesis in human embryonic stem cells as a novel tool to define the human neural lineage. Stem Cells 27, 521–532 (2009).

Anderson, D.J. Cellular and molecular biology of neural crest cell lineage determination. Trends Genet. 13, 276–280 (1997).