Derivation of an Ornstein–Uhlenbeck Process for a Massive Particle in a Rarified Gas of Particles
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alexander, R.: The Infinite Hard Sphere System. Ph.D. dissertation, Dept. Mathematics, Univ. California, Berkeley (1975)
Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. Wiley, New York (1999)
Bodineau, T., Gallagher, I., Saint-Raymond, L.: The Brownian motion as the limit of a deterministic system of hard-spheres. Invent Math. 203(2), 493–553 (2016)
Bodineau, T., Gallagher, I., Saint-Raymond, L.: From hard sphere dynamics to the Stokes–Fourier equations: an $$L^2$$ L 2 analysis of the Boltzmann-Grad limit. Ann. PDE 3, 2 (2017)
Caprino, S., Marchioro, C., Pulvirenti, M.: Approach to equilibrium in a microscopic model of friction. Commun. Math. Phys. 264(1), 167–189 (2006)
Cavallaro, G., Marchioro, C.: On the motion of an elastic body in a free gas. Rep. Math. Phys. 69(2), 251–264 (2012)
Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994)
Dobson, M., Legoll, F., Lelièvre, T., Stoltz, G.: Derivation of Langevin dynamics in a nonzero background flow field. ESAIM: M2AN 47(6), 1583–1626 (2013)
Dürr, D., Goldstein, S., Lebowitz, J.L.: A mechanical model of Brownian motion. Commun. Math. Phys. 78(4), 507–530 (1981)
Dürr, D., Goldstein, S., Lebowitz, J.L.: A mechanical model for the Brownian motion of a convex body. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 62(4), 427–448 (1983)
Durrett, R.: Stochastic Calculus. A Practical Introduction. Probability and Stochastics Series. CRC Press, Boca Raton (1996)
Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: hard spheres and short-range potentials. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2013)
Holley, R.: The motion of a heavy particle in an infinite one dimensional gas of hard spheres. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 17, 181–219 (1971)
Kusuoka, S., Liang, S.: A classical mechanical model of Brownian motion with plural particles. Rev. Math. Phys. 22, 733–838 (2010)
Lanford, O.E.: Time evolution of large classical systems. In: Moser, J. (ed.) Lecture Notes in Physics, vol. 38, pp. 1–111. Springer, New York (1975)