Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis

Seminars in Cancer Biology - Tập 36 - Trang 33-51 - 2016
Jinho Heo1, Rebeka Eki1,2, Tarek Abbas1,2,3
1Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
2Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
3Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA

Tài liệu tham khảo

Wang, 2014, Roles of F-box proteins in cancer, Nat. Rev. Cancer, 14, 233, 10.1038/nrc3700 Skaar, 2014, SCF ubiquitin ligase-targeted therapies, Nat. Rev. Drug Discov., 13, 889, 10.1038/nrd4432 Kornitzer, 2000, Modes of regulation of ubiquitin-mediated protein degradation, J. Cell. Physiol., 182, 1, 10.1002/(SICI)1097-4652(200001)182:1<1::AID-JCP1>3.0.CO;2-V Glickman, 2002, The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction, Physiol. Rev., 82, 373, 10.1152/physrev.00027.2001 Ciechanover, 2002, Ubiquitin-mediated degradation of cellular proteins in health and disease, Hepatology, 35, 3, 10.1053/jhep.2002.30316 Amir, 2001, The ubiquitin-proteasome system: the relationship between protein degradation and human diseases, Harefuah, 140, 1172 Teixeira, 2013, Ubiquitin ligases and cell cycle control, Annu. Rev. Biochem., 82, 387, 10.1146/annurev-biochem-060410-105307 Groll, 2003, Substrate access and processing by the 20S proteasome core particle, Int. J. Biochem. Cell Biol., 35, 606, 10.1016/S1357-2725(02)00390-4 Yang, 2010, Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development, Oncogene, 29, 4493, 10.1038/onc.2010.190 Behrends, 2011, Constructing and decoding unconventional ubiquitin chains, Nat. Struct. Mol. Biol., 18, 520, 10.1038/nsmb.2066 Li, 2008, Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling, PLoS ONE, 3, e1487, 10.1371/journal.pone.0001487 Deshaies, 2009, RING domain E3 ubiquitin ligases, Annu. Rev. Biochem., 78, 399, 10.1146/annurev.biochem.78.101807.093809 Petroski, 2005, Function and regulation of cullin-RING ubiquitin ligases, Nat. Rev. Mol. Cell Biol., 6, 9, 10.1038/nrm1547 Hotton, 2008, Regulation of cullin RING ligases, Annu. Rev. Plant Biol., 59, 467, 10.1146/annurev.arplant.58.032806.104011 Bosu, 2008, Cullin-RING ubiquitin ligases: global regulation and activation cycles, Cell Div., 3, 7, 10.1186/1747-1028-3-7 Chen, 2015, Cullin family proteins and tumorigenesis: genetic association and molecular mechanisms, J. Cancer, 6, 233, 10.7150/jca.11076 Lydeard, 2013, Building and remodelling Cullin-RING E3 ubiquitin ligases, EMBO Rep., 14, 1050, 10.1038/embor.2013.173 Sarikas, 2011, The cullin protein family, Genome Biol., 12, 220, 10.1186/gb-2011-12-4-220 Duda, 2011, Structural regulation of cullin-RING ubiquitin ligase complexes, Curr. Opin. Struct. Biol., 21, 257, 10.1016/j.sbi.2011.01.003 Hua, 2011, The cullin-RING ubiquitin-protein ligases, Annu. Rev. Plant Biol., 62, 299, 10.1146/annurev-arplant-042809-112256 Lipkowitz, 2011, RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis, Nat. Rev. Cancer, 11, 629, 10.1038/nrc3120 Kipreos, 2000, The F-box protein family, Genome Biol., 1, 10.1186/gb-2000-1-5-reviews3002 Cardozo, 2004, The SCF ubiquitin ligase: insights into a molecular machine, Nat. Rev. Mol. Cell Biol., 5, 739, 10.1038/nrm1471 Skaar, 2013, Mechanisms and function of substrate recruitment by F-box proteins, Nat. Rev. Mol. Cell Biol., 14, 369, 10.1038/nrm3582 Signoretti, 2002, Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer, J. Clin. Invest., 110, 633, 10.1172/JCI0215795 Gstaiger, 2001, Skp2 is oncogenic and overexpressed in human cancers, Proc. Natl. Acad. Sci. U. S. A., 98, 5043, 10.1073/pnas.081474898 Yokoi, 2004, Amplification and overexpression of SKP2 are associated with metastasis of non-small-cell lung cancers to lymph nodes, Am. J. Pathol., 165, 175, 10.1016/S0002-9440(10)63286-5 Shim, 2003, Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate, Cancer Res., 63, 1583 Latres, 2001, Role of the F-box protein Skp2 in lymphomagenesis, Proc. Natl. Acad. Sci. U. S. A., 98, 2515, 10.1073/pnas.041475098 Umanskaya, 2007, Skp2B stimulates mammary gland development by inhibiting REA, the repressor of the estrogen receptor, Mol. Cell. Biol., 27, 7615, 10.1128/MCB.01239-07 Wang, 2010, Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1+/− mice, Nat. Genet., 42, 83, 10.1038/ng.498 Chan, 2012, The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis, Cell, 149, 1098, 10.1016/j.cell.2012.02.065 Lin, 2010, Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence, Nature, 464, 374, 10.1038/nature08815 Sistrunk, 2013, Skp2 deficiency inhibits chemical skin tumorigenesis independent of p27(Kip1) accumulation, Am. J. Pathol., 182, 1854, 10.1016/j.ajpath.2013.01.016 Zhao, 2013, Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors, Cancer Cell, 24, 645, 10.1016/j.ccr.2013.09.021 Carrano, 1999, SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27, Nat. Cell Biol., 1, 193, 10.1038/12013 Sutterluty, 1999, p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells, Nat. Cell Biol., 1, 207, 10.1038/12027 Nakayama, 2000, Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication, EMBO J., 19, 2069, 10.1093/emboj/19.9.2069 Bornstein, 2003, Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase, J. Biol. Chem., 278, 25752, 10.1074/jbc.M301774200 Yu, 1998, Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins, Proc. Natl. Acad. Sci. U. S. A., 95, 11324, 10.1073/pnas.95.19.11324 Kamura, 2003, Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation, Proc. Natl. Acad. Sci. U. S. A., 100, 10231, 10.1073/pnas.1831009100 Tedesco, 2002, The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2), Genes Dev., 16, 2946, 10.1101/gad.1011202 Zhang, 1995, p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase, Cell, 82, 915, 10.1016/0092-8674(95)90271-6 Marti, 1999, Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation, Nat. Cell Biol., 1, 14, 10.1038/8984 Mendez, 2002, Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication, Mol. Cell, 9, 481, 10.1016/S1097-2765(02)00467-7 Li, 2003, The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation, J. Biol. Chem., 278, 30854, 10.1074/jbc.C300251200 Kiernan, 2001, Interaction between cyclin T1 and SCF(SKP2) targets CDK9 for ubiquitination and degradation by the proteasome, Mol. Cell. Biol., 21, 7956, 10.1128/MCB.21.23.7956-7970.2001 von der Lehr, 2003, The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription, Mol. Cell, 11, 1189, 10.1016/S1097-2765(03)00193-X Hiramatsu, 2006, Degradation of Tob1 mediated by SCFSkp2-dependent ubiquitination, Cancer Res., 66, 8477, 10.1158/0008-5472.CAN-06-1603 Song, 2008, Skp2 regulates the antiproliferative function of the tumor suppressor RASSF1A via ubiquitin-mediated degradation at the G1-S transition, Oncogene, 27, 3176, 10.1038/sj.onc.1210971 Liang, 2004, Ubiquitination and proteolysis of cancer-derived Smad4 mutants by SCFSkp2, Mol. Cell. Biol., 24, 7524, 10.1128/MCB.24.17.7524-7537.2004 Jiang, 2005, Ubiquitylation of RAG-2 by Skp2-SCF links destruction of the V(D)J recombinase to the cell cycle, Mol. Cell, 18, 699, 10.1016/j.molcel.2005.05.011 Tokarz, 2004, The ISG15 isopeptidase UBP43 is regulated by proteolysis via the SCFSkp2 ubiquitin ligase, J. Biol. Chem., 279, 46424, 10.1074/jbc.M403189200 Huang, 2005, Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation, Proc. Natl. Acad. Sci. U. S. A., 102, 1649, 10.1073/pnas.0406789102 Parameswaran, 2015, Damage-induced BRCA1 phosphorylation by Chk2 contributes to the timing of end resection, Cell Cycle, 14, 437, 10.4161/15384101.2014.972901 Moro, 2006, Up-regulation of Skp2 after prostate cancer cell adhesion to basement membranes results in BRCA2 degradation and cell proliferation, J. Biol. Chem., 281, 22100, 10.1074/jbc.M604636200 Jamal, 2015, The G1 phase E3 ubiquitin ligase TRUSS that gets deregulated in human cancers is a novel substrate of the S-phase E3 ubiquitin ligase Skp2, Cell Cycle, 14, 2688, 10.1080/15384101.2015.1056946 Xu, 2015, Skp2-macroH2A1-CDK8 axis orchestrates G2/M transition and tumorigenesis, Nat. Commun., 6, 6641, 10.1038/ncomms7641 Di Giorgio, 2015, The control operated by the cell cycle machinery on MEF2 stability contributes to the downregulation of CDKN1A and entry into S phase, Mol. Cell. Biol., 35, 1633, 10.1128/MCB.01461-14 Ougolkov, 2004, Associations among beta-TrCP, an E3 ubiquitin ligase receptor, beta-catenin, and NF-kappaB in colorectal cancer, J. Natl. Cancer Inst., 96, 1161, 10.1093/jnci/djh219 Muerkoster, 2005, Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells, Cancer Res., 65, 1316, 10.1158/0008-5472.CAN-04-1626 Koch, 2005, Elevated expression of Wnt antagonists is a common event in hepatoblastomas, Clin. Cancer Res., 11, 4295, 10.1158/1078-0432.CCR-04-1162 Fuchs, 2004, The many faces of beta-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer, Oncogene, 23, 2028, 10.1038/sj.onc.1207389 Saitoh, 2001, Expression profiles of betaTRCP1 and betaTRCP2, and mutation analysis of betaTRCP2 in gastric cancer, Int. J. Oncol., 18, 959 Kim, 2007, Somatic mutations of the beta-TrCP gene in gastric cancer, APMIS, 115, 127, 10.1111/j.1600-0463.2007.apm_562.x Kudo, 2004, Role of F-box protein betaTrcp1 in mammary gland development and tumorigenesis, Mol. Cell. Biol., 24, 8184, 10.1128/MCB.24.18.8184-8194.2004 Bhatia, 2011, Role of beta-TrCP ubiquitin ligase receptor in UVB mediated responses in skin, Arch. Biochem. Biophys., 508, 178, 10.1016/j.abb.2010.12.023 Guardavaccaro, 2003, Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo, Dev. Cell, 4, 799, 10.1016/S1534-5807(03)00154-0 Kanarek, 2010, Spermatogenesis rescue in a mouse deficient for the ubiquitin ligase SCF{beta}-TrCP by single substrate depletion, Genes Dev., 24, 470, 10.1101/gad.551610 Busino, 2003, Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage, Nature, 426, 87, 10.1038/nature02082 Jin, 2003, SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase, Genes Dev., 17, 3062, 10.1101/gad.1157503 Liu, 1999, beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation, Proc. Natl. Acad. Sci. U. S. A., 96, 6273, 10.1073/pnas.96.11.6273 Zhou, 2004, Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition, Nat. Cell Biol., 6, 931, 10.1038/ncb1173 Pons, 2008, Transfer-NMR and docking studies identify the binding of the peptide derived from activating transcription factor 4 to protein ubiquitin ligase beta-TrCP, Competition STD-NMR with beta-catenin, Biochemistry, 47, 14, 10.1021/bi7014212 Ciechanover, 2001, Mechanisms of ubiquitin-mediated, limited processing of the NF-kappaB1 precursor protein p105, Biochimie, 83, 341, 10.1016/S0300-9084(01)01239-1 Inuzuka, 2010, Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase, Cancer Cell, 18, 147, 10.1016/j.ccr.2010.06.015 Liu, 2015, Akt-mediated phosphorylation of XLF impairs non-homologous end-joining DNA repair, Mol. Cell, 57, 648, 10.1016/j.molcel.2015.01.005 Tan, 1999, Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha, Mol. Cell, 3, 527, 10.1016/S1097-2765(00)80481-5 Tan, 2006, SAG/ROC-SCF beta-TrCP E3 ubiquitin ligase promotes pro-caspase-3 degradation as a mechanism of apoptosis protection, Neoplasia, 8, 1042, 10.1593/neo.06568 Dorrello, 2006, S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth, Science, 314, 467, 10.1126/science.1130276 Amir, 2004, Mechanism of processing of the NF-kappa B2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCF(beta-TrCP) ubiquitin ligase, Oncogene, 23, 2540, 10.1038/sj.onc.1207366 Wang, 2012, DEPTOR ubiquitination and destruction by SCF(beta-TrCP), Am. J. Physiol. Endocrinol. Metab., 303, E163, 10.1152/ajpendo.00105.2012 Watanabe, 2004, M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP, Proc. Natl. Acad. Sci. U. S. A., 101, 4419, 10.1073/pnas.0307700101 Loveless, 2015, DNA damage regulates translation through beta-TRCP targeting of CReP, PLOS Genet., 11, e1005292, 10.1371/journal.pgen.1005292 Zhu, 2014, DNA damage induces the accumulation of Tiam1 by blocking beta-TrCP-dependent degradation, J. Biol. Chem., 289, 15482, 10.1074/jbc.M114.553388 Yan, 2015, SCF(JFK) is a bona fide E3 ligase for ING4 and a potent promoter of the angiogenesis and metastasis of breast cancer, Genes Dev., 29, 672, 10.1101/gad.254292.114 Sun, 2009, JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation, Proc. Natl. Acad. Sci. U. S. A., 106, 10195, 10.1073/pnas.0901864106 Gutgemann, 2008, Emi1 protein accumulation implicates misregulation of the anaphase promoting complex/cyclosome pathway in ovarian clear cell carcinoma, Mod. Pathol., 21, 445, 10.1038/modpathol.3801022 Min, 2013, Gynecologic Pathology Study Group of the Korean Society of, Clear cell carcinomas of the ovary: a multi-institutional study of 129 cases in Korea with prognostic significance of Emi1 and Galectin-3, Int. J. Gynecol. Pathol., 32, 3, 10.1097/PGP.0b013e31825554e9 Lehman, 2007, Oncogenic regulators and substrates of the anaphase promoting complex/cyclosome are frequently overexpressed in malignant tumors, Am. J. Pathol., 170, 1793, 10.2353/ajpath.2007.060767 Lee, 2006, Mouse emi1 has an essential function in mitotic progression during early embryogenesis, Mol. Cell. Biol., 26, 5373, 10.1128/MCB.00043-06 Reimann, 2001, Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex, Cell, 105, 645, 10.1016/S0092-8674(01)00361-0 Lu, 2012, The F-box protein FBXO44 mediates BRCA1 ubiquitination and degradation, J. Biol. Chem., 287, 41014, 10.1074/jbc.M112.407106 Sjögren, 2015, FBXO44-mediated degradation of RGS2 protein uniquely depends on a Cullin 4B/DDB1 complex, PLOS ONE, 10, e0123581, 10.1371/journal.pone.0123581 Fernandez-Saiz, 2013, SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma, Nat. Cell Biol., 15, 72, 10.1038/ncb2651 Cepeda, 2013, CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer, EMBO Mol. Med., 5, 999, 10.1002/emmm.201202341 Tzatsos, 2013, KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs, J. Clin. Invest., 123, 727 Wu, 2013, Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation, Mol. Cell, 49, 1134, 10.1016/j.molcel.2013.01.016 Laman, 2005, Transforming activity of Fbxo7 is mediated specifically through regulation of cyclin D/cdk6, EMBO J., 24, 3104, 10.1038/sj.emboj.7600775 Lomonosov, 2011, Expression of Fbxo7 in haematopoietic progenitor cells cooperates with p53 loss to promote lymphomagenesis, PLoS ONE, 6, e21165, 10.1371/journal.pone.0021165 Meziane el, 2011, Knockdown of Fbxo7 reveals its regulatory role in proliferation and differentiation of haematopoietic precursor cells, J. Cell Sci., 124, 2175, 10.1242/jcs.080465 Chang, 2006, The F-box protein Fbxo7 interacts with human inhibitor of apoptosis protein cIAP1 and promotes cIAP1 ubiquitination, Biochem. Biophys. Res. Commun., 342, 1022, 10.1016/j.bbrc.2006.02.061 Hsu, 2004, Fbx7 functions in the SCF complex regulating Cdk1-cyclin B-phosphorylated hepatoma up-regulated protein (HURP) proteolysis by a proline-rich region, J. Biol. Chem., 279, 32592, 10.1074/jbc.M404950200 Bai, 1996, SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box, Cell, 86, 263, 10.1016/S0092-8674(00)80098-7 Yokoi, 2003, Down-regulation of SKP2 induces apoptosis in lung-cancer cells, Cancer Sci., 94, 344, 10.1111/j.1349-7006.2003.tb01444.x Shapira, 2005, The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma, Cancer, 103, 1336, 10.1002/cncr.20917 Nakayama, 2006, Ubiquitin ligases: cell-cycle control and cancer, Nat. Rev. Cancer, 6, 369, 10.1038/nrc1881 Hershko, 2008, Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer, Cancer, 112, 1415, 10.1002/cncr.23317 Mamillapalli, 2001, PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2), Curr. Biol., 11, 263, 10.1016/S0960-9822(01)00065-3 Abbas, 2013, Genomic instability in cancer, Cold Spring Harb. Perspect. Biol., 5, a012914, 10.1101/cshperspect.a012914 Nishitani, 2006, Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis, EMBO J., 25, 1126, 10.1038/sj.emboj.7601002 Liu, 2004, Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation, J. Biol. Chem., 279, 17283, 10.1074/jbc.C300549200 Takeda, 2005, Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase, J. Biol. Chem., 280, 23416, 10.1074/jbc.M501208200 Kim, 2003, Skp2 regulates Myc protein stability and activity, Mol. Cell, 11, 1177, 10.1016/S1097-2765(03)00173-4 Choi, 2010, Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells, Genes Dev., 24, 1236, 10.1101/gad.1920310 Evans, 2015, SKP2 is a direct transcriptional target of MYCN and a potential therapeutic target in neuroblastoma, Cancer Lett., 363, 37, 10.1016/j.canlet.2015.03.044 Bretones, 2011, SKP2 oncogene is a direct MYC target gene and MYC down-regulates p27(KIP1) through SKP2 in human leukemia cells, J. Biol. Chem., 286, 9815, 10.1074/jbc.M110.165977 Gustafson, 2010, Myc proteins as therapeutic targets, Oncogene, 29, 1249, 10.1038/onc.2009.512 Buschbeck, 2009, The histone variant macroH2A is an epigenetic regulator of key developmental genes, Nat. Struct. Mol. Biol., 16, 1074, 10.1038/nsmb.1665 Zhang, 2005, Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA, Dev. Cell, 8, 19, 10.1016/j.devcel.2004.10.019 Davis, 2013, The SCF-Fbw7 ubiquitin ligase degrades MED13 and MED13L and regulates CDK8 module association with Mediator, Genes Dev., 27, 151, 10.1101/gad.207720.112 Kapoor, 2010, The histone variant macroH2A suppresses melanoma progression through regulation of CDK8, Nature, 468, 1105, 10.1038/nature09590 Lu, 2014, Skp2 suppresses apoptosis in Rb1-deficient tumours by limiting E2F1 activity, Nat. Commun., 5, 3463, 10.1038/ncomms4463 Oh, 2004, The papillomavirus E7 oncoprotein is ubiquitinated by UbcH7 and Cullin 1- and Skp2-containing E3 ligase, J. Virol., 78, 5338, 10.1128/JVI.78.10.5338-5346.2004 Frescas, 2008, Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer, Nat. Rev. Cancer, 8, 438, 10.1038/nrc2396 Mark, 2014, Ubiquitin ligase trapping identifies an SCF(Saf1) pathway targeting unprocessed vacuolar/lysosomal proteins, Mol. Cell, 53, 148, 10.1016/j.molcel.2013.12.003 Kimball, 1999, Eukaryotic initiation factor eIF2, Int. J. Biochem. Cell Biol., 31, 25, 10.1016/S1357-2725(98)00128-9 Lehman, 2006, Overexpression of the anaphase promoting complex/cyclosome inhibitor Emi1 leads to tetraploidy and genomic instability of p53-deficient cells, Cell Cycle, 5, 1569, 10.4161/cc.5.14.2925 Chen, 2011, Bcr-Abl-induced tyrosine phosphorylation of Emi1 to stabilize Skp2 protein via inhibition of ubiquitination in chronic myeloid leukemia cells, J. Cell. Physiol., 226, 407, 10.1002/jcp.22346 Di Fiore, 2007, Emi1 is needed to couple DNA replication with mitosis but does not regulate activation of the mitotic APC/C, J. Cell Biol., 177, 425, 10.1083/jcb.200611166 Cao, 2006, Regulator of G-protein signaling 2 (RGS2) inhibits androgen-independent activation of androgen receptor in prostate cancer cells, Oncogene, 25, 3719, 10.1038/sj.onc.1209408 Fukuda, 2011, Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly, Mol. Cell. Neurosci., 46, 614, 10.1016/j.mcn.2011.01.001 Ge, 2011, F-box protein 10, an NF-kappaB-dependent anti-apoptotic protein, regulates TRAIL-induced apoptosis through modulating c-Fos/c-FLIP pathway, Cell Death Differ., 18, 1184, 10.1038/cdd.2010.185 Koyama-Nasu, 2007, The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun, Nat. Cell Biol., 9, 1074, 10.1038/ncb1628 Janzer, 2012, The H3K4me3 histone demethylase Fbxl10 is a regulator of chemokine expression, cellular morphology, and the metabolome of fibroblasts, J. Biol. Chem., 287, 30984, 10.1074/jbc.M112.341040 He, 2008, The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b), Nat. Struct. Mol. Biol., 15, 1169, 10.1038/nsmb.1499 Frescas, 2007, JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes, Nature, 450, 309, 10.1038/nature06255 Knuutila, 1999, DNA copy number losses in human neoplasms, Am. J. Pathol., 155, 683, 10.1016/S0002-9440(10)65166-8 Davis, 2014, Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities, Cancer Cell, 26, 455, 10.1016/j.ccell.2014.09.013 Malyukova, 2007, The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling, Cancer Res., 67, 5611, 10.1158/0008-5472.CAN-06-4381 Maser, 2007, Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers, Nature, 447, 966, 10.1038/nature05886 O’Neil, 2007, FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors, J. Exp. Med., 204, 1813, 10.1084/jem.20070876 Thompson, 2007, The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia, J. Exp. Med., 204, 1825, 10.1084/jem.20070872 Hao, 2007, Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases, Mol. Cell, 26, 131, 10.1016/j.molcel.2007.02.022 Orlicky, 2003, Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase, Cell, 112, 243, 10.1016/S0092-8674(03)00034-5 Tang, 2007, Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination, Cell, 129, 1165, 10.1016/j.cell.2007.04.042 King, 2013, The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability, Cell, 153, 1552, 10.1016/j.cell.2013.05.041 Davis, 2014, Investigation of the atypical FBXW7 mutation spectrum in human tumours by conditional expression of a heterozygous propellor tip missense allele in the mouse intestines, Gut, 63, 792, 10.1136/gutjnl-2013-304719 Bonetti, 2008, Nucleophosmin and its AML-associated mutant regulate c-Myc turnover through Fbw7 gamma, J. Cell Biol., 182, 19, 10.1083/jcb.200711040 Grim, 2008, Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase, J. Cell Biol., 181, 913, 10.1083/jcb.200802076 Welcker, 2004, A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size, Curr. Biol., 14, 1852, 10.1016/j.cub.2004.09.083 Welcker, 2004, The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation, Proc. Natl. Acad. Sci. U. S. A., 101, 9085, 10.1073/pnas.0402770101 Yada, 2004, Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7, EMBO J., 23, 2116, 10.1038/sj.emboj.7600217 Agrawal, 2011, Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1, Science, 333, 1154, 10.1126/science.1206923 Le Gallo, 2012, Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes, Nat. Genet., 44, 1310, 10.1038/ng.2455 Mao, 2004, Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene, Nature, 432, 775, 10.1038/nature03155 Kwon, 2012, Pten regulates Aurora-A and cooperates with Fbxw7 in modulating radiation-induced tumor development, Mol. Cancer Res., 10, 834, 10.1158/1541-7786.MCR-12-0025 Matsuoka, 2008, Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL, Genes Dev., 22, 986, 10.1101/gad.1621808 Onoyama, 2007, Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis, J. Exp. Med., 204, 2875, 10.1084/jem.20062299 Thompson, 2008, Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7, J. Exp. Med., 205, 1395, 10.1084/jem.20080277 Babaei-Jadidi, 2011, FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch. Jun, and DEK for degradation, J. Exp. Med., 208, 295, 10.1084/jem.20100830 Sancho, 2010, F-box and WD repeat domain-containing 7 regulates intestinal cell lineage commitment and is a haploinsufficient tumor suppressor, Gastroenterology, 139, 929, 10.1053/j.gastro.2010.05.078 Reavie, 2013, Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression, Cancer Cell, 23, 362, 10.1016/j.ccr.2013.01.025 Takeishi, 2013, Ablation of Fbxw7 eliminates leukemia-initiating cells by preventing quiescence, Cancer Cell, 23, 347, 10.1016/j.ccr.2013.01.026 Koepp, 2001, Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase, Science, 294, 173, 10.1126/science.1065203 Wei, 2005, The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase, Cancer Cell, 8, 25, 10.1016/j.ccr.2005.06.005 Bengoechea-Alonso, 2010, Tumor suppressor Fbxw7 regulates TGFbeta signaling by targeting TGIF1 for degradation, Oncogene, 29, 5322, 10.1038/onc.2010.278 Wu, 2001, SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation, Mol. Cell. Biol., 21, 7403, 10.1128/MCB.21.21.7403-7415.2001 Inuzuka, 2011, SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction, Nature, 471, 104, 10.1038/nature09732 Liu, 2010, The Fbw7/human CDC4 tumor suppressor targets proproliferative factor KLF5 for ubiquitination and degradation through multiple phosphodegron motifs, J. Biol. Chem., 285, 18858, 10.1074/jbc.M109.099440 Giraldez, 2014, SCF(FBXW7alpha) modulates the intra-S-phase DNA-damage checkpoint by regulating Polo like kinase-1 stability, Oncotarget, 5, 4370, 10.18632/oncotarget.2021 Watanabe, 2012, FBL2 regulates amyloid precursor protein (APP) metabolism by promoting ubiquitination-dependent APP degradation and inhibition of APP endocytosis, J. Neurosci., 32, 3352, 10.1523/JNEUROSCI.5659-11.2012 Chen, 2013, Skp-cullin-F box E3 ligase component FBXL2 ubiquitinates Aurora B to inhibit tumorigenesis, Cell Death Dis., 4, e759, 10.1038/cddis.2013.271 Chen, 2012, F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation, Blood, 119, 3132, 10.1182/blood-2011-06-358911 Chen, 2012, F-box protein FBXL2 exerts human lung tumor suppressor-like activity by ubiquitin-mediated degradation of cyclin D3 resulting in cell cycle arrest, Oncogene, 31, 2566, 10.1038/onc.2011.432 Kuchay, 2013, FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade, Nat. Cell Biol., 15, 472, 10.1038/ncb2731 Lin, 2006, Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex, Mol. Cell, 24, 355, 10.1016/j.molcel.2006.09.007 Barbash, 2008, Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and contribute to cyclin D1 overexpression in human cancer, Cancer Cell, 14, 68, 10.1016/j.ccr.2008.05.017 Vaites, 2011, The Fbx4 tumor suppressor regulates cyclin D1 accumulation and prevents neoplastic transformation, Mol. Cell. Biol., 31, 4513, 10.1128/MCB.05733-11 Lian, 2015, FBXO4 loss facilitates carcinogen induced papilloma development in mice, Cancer Biol. Ther., 16, 750, 10.1080/15384047.2015.1026512 Kanie, 2012, Genetic reevaluation of the role of F-box proteins in cyclin D1 degradation, Mol. Cell. Biol., 32, 590, 10.1128/MCB.06570-11 Jia, 2009, F-box proteins FBXO31 and FBX4 in regulation of cyclin D1 degradation upon DNA damage, Pigment Cell Melanoma Res., 22, 518, 10.1111/j.1755-148X.2009.00611.x Lee, 2006, The F-box protein FBX4 targets PIN2/TRF1 for ubiquitin-mediated degradation and regulates telomere maintenance, J. Biol. Chem., 281, 759, 10.1074/jbc.M509855200 Miller, 2003, Pooled analysis of loss of heterozygosity in breast cancer: a genome scan provides comparative evidence for multiple tumor suppressors and identifies novel candidate regions, Am. J. Hum. Genet., 73, 748, 10.1086/378522 Kumar, 2005, FBXO31 is the chromosome 16q24.3 senescence gene, a candidate breast tumor suppressor, and a component of an SCF complex, Cancer Res., 65, 11304, 10.1158/0008-5472.CAN-05-0936 Launonen, 2000, Loss of heterozygosity at chromosomes 3, 6, 8, 11, 16, and 17 in ovarian cancer: correlation to clinicopathological variables, Cancer Genet. Cytogenet., 122, 49, 10.1016/S0165-4608(00)00279-X Härkönen, 2005, Loss of heterozygosity in chromosomal region 16q24.3 associated with progression of prostate cancer, Prostate, 62, 267, 10.1002/pros.20147 Huang, 2010, FBXO31 is down-regulated and may function as a tumor suppressor in hepatocellular carcinoma, Oncol. Rep., 24, 715 Zhang, 2014, F-box protein FBXO31 is down-regulated in gastric cancer and negatively regulated by miR-17 and miR-20a, Oncotarget, 5, 6178, 10.18632/oncotarget.2183 Santra, 2009, F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage, Nature, 459, 722, 10.1038/nature08011 Johansson, 2014, SCF-FBXO31 E3 ligase targets DNA replication factor Cdt1 for proteolysis in the G2 phase of cell cycle to prevent re-replication, J. Biol. Chem., 289, 18514, 10.1074/jbc.M114.559930 Malonia, 2015, F-box protein FBXO31 directs degradation of MDM2 to facilitate p53-mediated growth arrest following genotoxic stress, Proc. Natl. Acad. Sci. U. S. A., 112, 8632, 10.1073/pnas.1510929112 Vadhvani, 2013, The centrosomal E3 ubiquitin ligase FBXO31-SCF regulates neuronal morphogenesis and migration, PLOS ONE, 8, e57530, 10.1371/journal.pone.0057530 Kim, 2012, Pathway-based classification of cancer subtypes, Biol. Direct, 7, 21, 10.1186/1745-6150-7-21 Wang, 2010, Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers, Hum. Mol. Genet., 19, 2886, 10.1093/hmg/ddq174 Coon, 2012, Novel E3 ligase component FBXL7 ubiquitinates and degrades Aurora A, causing mitotic arrest, Cell Cycle, 11, 721, 10.4161/cc.11.4.19171 Liu, 2015, The proapoptotic F-box Protein Fbxl7 regulates mitochondrial function by mediating the ubiquitylation and proteasomal degradation of survivin, J. Biol. Chem., 290, 11843, 10.1074/jbc.M114.629931 Vinas-Castells, 2010, The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation, J. Biol. Chem., 285, 3794, 10.1074/jbc.M109.065995 Vernon, 2006, Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa, Development, 133, 3359, 10.1242/dev.02504 Zheng, 2012, Essential role of Fbxl14 ubiquitin ligase in regulation of vertebrate axis formation through modulating Mkp3 level, Cell Res., 22, 936, 10.1038/cr.2012.37 Lander, 2011, The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1, J. Cell Biol., 194, 17, 10.1083/jcb.201012085 Zhu, 2012, Role of FBXL20 in human colorectal adenocarcinoma, Oncol. Rep., 28, 2290, 10.3892/or.2012.2065 Takagi, 2012, SCRAPPER regulates the thresholds of long-term potentiation/depression, the bidirectional synaptic plasticity in hippocampal CA3-CA1 synapses, Neural Plas., 2012, 352829 Yao, 2007, SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release, Cell, 130, 943, 10.1016/j.cell.2007.06.052 Xiao, 2015, FBXL20-mediated Vps34 ubiquitination as a p53 controlled checkpoint in regulating autophagy and receptor degradation, Genes Dev., 29, 184, 10.1101/gad.252528.114 Wu, 2015, FBXL5 inhibits metastasis of gastric cancer through suppressing Snail1, Cell Physiol. Biochem., 35, 1764, 10.1159/000373988 Chen, 2014, FBXL5-mediated degradation of single-stranded DNA-binding protein hSSB1 controls DNA damage response, Nucleic Acids Res., 42, 11560, 10.1093/nar/gku876 Ruiz, 2013, F-box and leucine-rich repeat protein 5 (FBXL5) is required for maintenance of cellular and systemic iron homeostasis, J. Biol. Chem., 288, 552, 10.1074/jbc.M112.426171 Moroishi, 2011, The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo, Cell Metab., 14, 339, 10.1016/j.cmet.2011.07.011 Salahudeen, 2009, An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis, Science, 326, 722, 10.1126/science.1176326 Vashisht, 2009, Control of iron homeostasis by an iron-regulated ubiquitin ligase, Science, 326, 718, 10.1126/science.1176333 Zhang, 2007, FBXL5 interacts with p150Glued and regulates its ubiquitination, Biochem. Biophys. Res. Commun., 359, 34, 10.1016/j.bbrc.2007.05.068 Vinas-Castells, 2014, Nuclear ubiquitination by FBXL5 modulates Snail1 DNA binding and stability, Nucleic Acids Res., 42, 1079, 10.1093/nar/gkt935 Tsutsumi, 2008, Disruption of the Fbxw8 gene results in pre- and postnatal growth retardation in mice, Mol. Cell. Biol., 28, 743, 10.1128/MCB.01665-07 Tsunematsu, 2006, Fbxw8 is essential for Cul1-Cul7 complex formation and for placental development, Mol. Cell. Biol., 26, 6157, 10.1128/MCB.00595-06 Kim, 2012, mTOR complex 2 regulates proper turnover of insulin receptor substrate-1 via the ubiquitin ligase subunit Fbw8, Mol. Cell, 48, 875, 10.1016/j.molcel.2012.09.029 Kong, 2012, Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is mediated by CUL7 E3 ligase, PLoS ONE, 7, e46485, 10.1371/journal.pone.0046485 Okabe, 2006, A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation, PLoS ONE, 1, e128, 10.1371/journal.pone.0000128 Wang, 2014, The CUL7/F-box and WD repeat domain containing 8 (CUL7/Fbxw8) ubiquitin ligase promotes degradation of hematopoietic progenitor kinase 1, J. Biol. Chem., 289, 4009, 10.1074/jbc.M113.520106 Fu, 2013, Low cyclin F expression in hepatocellular carcinoma associates with poor differentiation and unfavorable prognosis, Cancer Sci., 104, 508, 10.1111/cas.12100 Singhal, 2003, Alterations in cell cycle genes in early stage lung adenocarcinoma identified by expression profiling, Cancer Biol. Ther., 2, 291, 10.4161/cbt.2.3.399 Tetzlaff, 2004, Cyclin F disruption compromises placental development and affects normal cell cycle execution, Mol. Cell. Biol., 24, 2487, 10.1128/MCB.24.6.2487-2498.2004 D’Angiolella, 2010, SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation, Nature, 466, 138, 10.1038/nature09140 Emanuele, 2011, Global identification of modular cullin-RING ligase substrates, Cell, 147, 459, 10.1016/j.cell.2011.09.019 D’Angiolella, 2012, Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair, Cell, 149, 1023, 10.1016/j.cell.2012.03.043 Klein, 2015, Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control, Nat. Commun., 6, 5800, 10.1038/ncomms6800 Peschiaroli, 2009, The F-box protein FBXO45 promotes the proteasome-dependent degradation of p73, Oncogene, 28, 3157, 10.1038/onc.2009.177 Chen, 2014, Fbxo45-mediated degradation of the tumor-suppressor Par-4 regulates cancer cell survival, Cell Death Differ., 21, 1535, 10.1038/cdd.2014.92 Xu, 2015, Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors, Oncotarget, 6, 979, 10.18632/oncotarget.2825 Chiorazzi, 2013, Related F-box proteins control cell death in Caenorhabditis elegans and human lymphoma, Proc. Natl. Acad. Sci. U. S. A., 110, 3943, 10.1073/pnas.1217271110 Samuelson, 2007, Rat Mcs5a is a compound quantitative trait locus with orthologous human loci that associate with breast cancer risk, Proc. Natl. Acad. Sci. U. S. A., 104, 6299, 10.1073/pnas.0701687104 Smits, 2012, An insulator loop resides between the synthetically interacting elements of the human/rat conserved breast cancer susceptibility locus MCS5A/Mcs5a, Nucleic Acids Res., 40, 132, 10.1093/nar/gkr610 Duan, 2012, FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas, Nature, 481, 90, 10.1038/nature10688 Hardisty-Hughes, 2006, A mutation in the F-box gene, Fbxo11, causes otitis media in the Jeff mouse, Hum. Mol. Genet., 15, 3273, 10.1093/hmg/ddl403 Abbas, 2013, CRL1-FBXO11 promotes Cdt2 ubiquitylation and degradation and regulates Pr-Set7/Set8-mediated cellular migration, Mol. Cell, 49, 1147, 10.1016/j.molcel.2013.02.003 Rossi, 2013, Regulation of the CRL4(Cdt2) ubiquitin ligase and cell-cycle exit by the SCF(Fbxo11) ubiquitin ligase, Mol. Cell, 49, 1159, 10.1016/j.molcel.2013.02.004 Abida, 2007, FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity, J. Biol. Chem., 282, 1797, 10.1074/jbc.M609001200 Zheng, 2014, PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial-mesenchymal transition and metastasis, Cancer Cell, 26, 358, 10.1016/j.ccr.2014.07.022 Jin, 2015, FBXO11 promotes ubiquitination of the Snail family of transcription factors in cancer progression and epidermal development, Cancer Lett., 362, 70, 10.1016/j.canlet.2015.03.037 Jeong, 2013, FBH1 protects melanocytes from transformation and is deregulated in melanomas, Cell Cycle (Georgetown, Tex.), 12, 1128, 10.4161/cc.24165 Zhang, 2014, Rare coding variants and breast cancer risk: evaluation of susceptibility Loci identified in genome-wide association studies, Cancer Epidemiol. Biomarkers Prev., 23, 622, 10.1158/1055-9965.EPI-13-1043 Laulier, 2010, Mammalian Fbh1 is important to restore normal mitotic progression following decatenation stress, DNA Repair, 9, 708, 10.1016/j.dnarep.2010.03.011 Lawrence, 2009, Stress-induced phosphorylation of S. pombe Atf1 abrogates its interaction with F box protein Fbh1, Curr. Biol., 19, 1907, 10.1016/j.cub.2009.09.044 Lockwood, 2013, The novel ubiquitin ligase complex, SCF(Fbxw4), interacts with the COP9 signalosome in an F-box dependent manner, is mutated, lost and under-expressed in human cancers, PLOS ONE, 8, e63610, 10.1371/journal.pone.0063610 Baumann, 2014, Disruption of the PRKCD–FBXO25–HAX-1 axis attenuates the apoptotic response and drives lymphomagenesis, Nat. Med., 20, 1401, 10.1038/nm.3740 Jang, 2011, A novel Fbxo25 acts as an E3 ligase for destructing cardiac specific transcription factors, Biochem. Biophys. Res. Commun., 410, 183, 10.1016/j.bbrc.2011.05.011 Teixeira, 2013, The F-box protein FBXO25 promotes the proteasome-dependent degradation of ELK-1 protein, J. Biol. Chem., 288, 28152, 10.1074/jbc.M113.504308 Gregory, 2003, Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization, J. Biol. Chem., 278, 51606, 10.1074/jbc.M310722200 Sears, 2000, Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability, Genes Dev., 14, 2501, 10.1101/gad.836800 Bahram, 2000, c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover, Blood, 95, 2104, 10.1182/blood.V95.6.2104 Bhatia, 1993, Point mutations in the c-Myc transactivation domain are common in Burkitt's lymphoma and mouse plasmacytomas, Nat. Genet., 5, 56, 10.1038/ng0993-56 Weng, 2004, Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia, Science, 306, 269, 10.1126/science.1102160 Siu, 2014, Chromosome instability underlies hematopoietic stem cell dysfunction and lymphoid neoplasia associated with impaired Fbw7-mediated cyclin E regulation, Mol. Cell. Biol., 34, 3244, 10.1128/MCB.01528-13 Rajagopalan, 2004, Inactivation of hCDC4 can cause chromosomal instability, Nature, 428, 77, 10.1038/nature02313 Chen, 2011, FBXL2 is a ubiquitin E3 ligase subunit that triggers mitotic arrest, Cell Cycle, 10, 3487, 10.4161/cc.10.20.17742 Chen, 2013, A combinatorial F box protein directed pathway controls TRAF adaptor stability to regulate inflammation, Nat. Immunol., 14, 470, 10.1038/ni.2565 Li, 2010, Structural basis of dimerization-dependent ubiquitination by the SCF(Fbx4) ubiquitin ligase, J. Biol. Chem., 285, 13896, 10.1074/jbc.M110.111518 Barbash, 2011, Phosphorylation-dependent regulation of SCFFbx4 dimerization and activity involves a novel component 14-3-3, Oncogene, 30, 1995, 10.1038/onc.2010.584 Koo, 2014, Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth, Cancer Res., 74, 2555, 10.1158/0008-5472.CAN-13-2946 Pontano, 2008, Genotoxic stress-induced cyclin D1 phosphorylation and proteolysis are required for genomic stability, Mol. Cell. Biol., 28, 7245, 10.1128/MCB.01085-08 Lee, 2013, The FBXO4 tumor suppressor functions as a barrier to BrafV600E-dependent metastatic melanoma, Mol. Cell. Biol., 33, 4422, 10.1128/MCB.00706-13 Abbas, 2011, CRL4Cdt2: master coordinator of cell cycle progression and genome stability, Cell Cycle, 10, 241, 10.4161/cc.10.2.14530 Abbas, 2010, CRL4(Cdt2) regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation, Mol. Cell, 40, 9, 10.1016/j.molcel.2010.09.014 Chandrasekaran, 2011, Stress-stimulated mitogen-activated protein kinases control the stability and activity of the Cdt1 DNA replication licensing factor, Mol. Cell. Biol., 31, 4405, 10.1128/MCB.06163-11 Rizzardi, 2015, CDK1-dependent inhibition of the E3 ubiquitin ligase CRL4CDT2 ensures robust transition from S Phase to Mitosis, J. Biol. Chem., 290, 556, 10.1074/jbc.M114.614701 Abbas, 2013, Regulation of TGF-(signaling, exit from the cell cycle, and cellular migration through cullin cross-regulation: SCF-FBXO11 turns off CRL4-Cdt2, Cell Cycle (Georgetown, Tex.), 12, 2175, 10.4161/cc.25314 Xu, 2008, The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation, Mol. Cell, 30, 403, 10.1016/j.molcel.2008.03.009 Lin, 2011, Fbxw8 is involved in the proliferation of human choriocarcinoma JEG-3 cells, Mol. Biol. Rep., 38, 1741, 10.1007/s11033-010-0288-7 Cen, 2014, FBXL5 targets cortactin for ubiquitination-mediated destruction to regulate gastric cancer cell migration, Tumour Biol., 35, 8633, 10.1007/s13277-014-2104-9 Dragoi, 2014, Novel strategies to enforce an epithelial phenotype in mesenchymal cells, Cancer Res., 74, 3659, 10.1158/0008-5472.CAN-13-3231 Hanahan, 2011, Hallmarks of cancer: the next generation, Cell, 144, 646, 10.1016/j.cell.2011.02.013 Fung, 2002, Cyclin F is degraded during G2-M by mechanisms fundamentally different from other cyclins, J. Biol. Chem., 277, 35140, 10.1074/jbc.M205503200 Li, 2013, USP33 regulates centrosome biogenesis via deubiquitination of the centriolar protein CP110, Nature, 495, 255, 10.1038/nature11941 Martínez, 2009, Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice, Genes Dev., 23, 2060, 10.1101/gad.543509 Kim, 2004, SCFhFBH1 can act as helicase and E3 ubiquitin ligase, Nucleic Acids Res., 32, 2287, 10.1093/nar/gkh534 Fugger, 2009, Human Fbh1 helicase contributes to genome maintenance via pro- and anti-recombinase activities, J. Cell Biol., 186, 655, 10.1083/jcb.200812138 Jeong, 2013, FBH1 promotes DNA double-strand breakage and apoptosis in response to DNA replication stress, J. Cell Biol., 200, 141, 10.1083/jcb.201209002 Fugger, 2013, FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress, Nat. Commun., 4, 1423, 10.1038/ncomms2395 Huen, 2010, BRCA1 and its toolbox for the maintenance of genome integrity, Nat. Rev. Mol. Cell Biol., 11, 138, 10.1038/nrm2831 Orlicky, 2010, An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase, Nat. Biotechnol., 28, 733, 10.1038/nbt.1646 Aghajan, 2010, Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase, Nat. Biotechnol., 28, 738, 10.1038/nbt.1645 Wu, 2012, Specific small molecule inhibitors of Skp2-mediated p27 degradation, Chem. Biol., 19, 1515, 10.1016/j.chembiol.2012.09.015 Chan, 2013, Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression, Cell, 154, 556, 10.1016/j.cell.2013.06.048 Shuvalov, 2015, Current genome editing tools in gene therapy: new approaches to treat cancer, Curr. Gene Ther., 15, 511, 10.2174/1566523215666150818110241