Deregulated microRNA expression in biospecimens from patients diagnosed with schizophrenia and bipolar disorder as a disease biomarker

Walter de Gruyter GmbH - Tập 5 - Trang 173-178 - 2014
Ivana Delalle1, Patricia F. Kao2, Jason Choi1
1Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, USA
2Department of Pathology and Laboratory Medicine, Alzheimer’s Disease Center, M.I.N.D. Institute, UC Davis Medical Center, Sacramento, USA

Tóm tắt

The biological markers for schizophrenia (SZ) and bipolar disorder (BD) would represent a precious tool in evaluating the risk for the development of these common neuropsychiatric diseases and, possibly, in the prevention of either disease episodes and/or treatment efficiency monitoring. Since both SZ and BD are diseases with a significant genetic component, the research over the last decades has focused on the genes with altered function in the central nervous system (CNS) of individuals suffering from these illnesses. Recently, however, small non-coding RNA molecules (microRNAs, miRNAs, miRs) were shown to regulate the expression of human CNS genes involved in cell processes and functions negatively affected in neuropsychiatric disorders, including synaptic development and maturation, learning and memory. Differentially expressed sets of miRNAs have been reported in the tissues of SZ and BD patients in comparison to controls suggesting the emergence of a novel class of potential biomarkers. Here we review the reports on the changes in miRNA expression in postmortem brain tissue and peripheral blood in SZ and BD. We also evaluate the potential of miRNA packaged in exosomes, signaling vesicles released by neurons and glia, to contribute to the disaggregation of the molecular machinery underlying mental disorders and provide clinically useful biomarkers.

Tài liệu tham khảo

Bhugra D., The global prevalence of schizophrenia. PLoS Med., 2005, 2, e151; quiz e175 Breslau J., Kendler K.S., Su M., Gaxiola-Aguilar S., Kessler R.C., Lifetime risk and persistence of psychiatric disorders across ethnic groups in the United States, Psychol. Med., 2005, 35, 317–327 Goldberg J.F., Harrow M., Consistency of remission and outcome in bipolar and unipolar mood disorders: a 10-year prospective follow-up, J. Affect. Disord., 2004, 81, 123–131 Sullivan P.F., The genetics of schizophrenia, PLoS Med., 2005, 2, e212 Barnett J.H., Smoller J.W., The genetics of bipolar disorder, Neuroscience, 2009, 164, 331–343 Craddock N., O’Donovan M.C., Owen M.J., Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology, Schizophr. Bull., 2006, 32, 9–16 Boshes R.A., Manschreck T.C., Konigsberg W., Genetics of the schizophrenias: a model accounting for their persistence and myriad phenotypes, Harv. Rev. Psychiatry, 2012, 20, 119–129 Maric N.P., Svrakic D.M., Why schizophrenia genetics needs epigenetics: a review, Psychiatr. Danub., 2012, 24, 2–18 Peedicayil J., Role of epigenetics in pharmacotherapy, psychotherapy and nutritional management of mental disorders, J. Clin. Pharm. Ther., 2012, 37, 499–501 Im H.I., Kenny P.J., MicroRNAs in neuronal function and dysfunction, Trends Neurosci., 2012, 35, 325–334 Ashraf S.I., McLoon A.L., Sclarsic S.M., Kunes S., Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila, Cell, 2006, 124, 191–205 Maffioletti E., Tardito D., Gennarelli M., Bocchio-Chiavetto L., Micro spies from the brain to the periphery: new clues from studies on microRNAs in neuropsychiatric disorders, Front. Cell. Neurosci., 2014, 8, 75 Smalheiser N.R., Exosomal transfer of proteins and RNAs at synapses in the nervous system, Biol. Direct, 2007, 2, 35 Fevrier B., Raposo G., Exosomes: endosomal-derived vesicles shipping extracellular messages, Curr. Opin. Cell Biol., 2004, 16, 415–421 van Niel G., Porto-Carreiro I., Simoes S., Raposo G., Exosomes: a common pathway for a specialized function, J. Biochem., 2006, 140, 13–21 Bakhti M., Winter C., Simons M., Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles, J. Biol. Chem., 2011, 286, 787–796 Fitzner D., Schnaars M., van Rossum D., Krishnamoorthy G., Dibaj P., Bakhti M., et al., Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis, J. Cell Sci., 2011, 124, 447–458 Taylor A.R., Robinson M.B., Gifondorwa D.J., Tytell M., Milligan C.E., Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases, Dev. Neurobiol., 2007, 67, 1815–1829 Tytell M., Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues, Int. J. Hyperthermia, 2005, 21, 445–455 Guescini M., Genedani S., Stocchi V., Agnati L.F., Astrocytes and Glioblastoma cells release exosomes carrying mtDNA, J. Neural Transm., 2010, 117, 1–4 Fauré J., Lachenal G., Court M., Hirrlinger J., Chatellard-Causse C., Blot B., et al., Exosomes are released by cultured cortical neurones, Mol. Cell. Neurosci., 2006, 31, 642–648 Lachenal G., Pernet-Gallay K., Chivet M., Hemming F.J., Belly A., Bodon G., et al., Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity, Mol. Cell. Neurosci., 2011, 46, 409–418 Mathivanan S., Simpson R.J. ExoCarta: a compendium of exosomal proteins and RNA, Proteomics, 2009, 9, 4997–5000 Wang S., Cesca F., Loers G., Schweizer M., Buck F., Benfenati F., et al., Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes, J. Neurosci., 2011, 31, 7275–7290 Gomes C., Keller S., Altevogt P., Costa J., Evidence for secretion of Cu,Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis, Neurosci. Lett., 2007, 428, 43–46 Vella L.J., Sharples R.A., Lawson V.A., Masters C.L., Cappai R., Hill A. F., Packaging of prions into exosomes is associated with a novel pathway of PrP processing, J. Pathol., 2007, 211, 582–590 Saman S., Kim W., Raya M., Visnick Y., Miro S., Saman S., et al., Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease, J. Biol. Chem., 2012, 287, 3842–3849 Skog J., Wurdinger T., van Rijn S., Meijer D.H., Gainche L., Sena-Esteves M., et al., Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers, Nat. Cell Biol., 2008, 10, 1470–1476 Frühbeis C., Fröhlich D., Kramer-Albers E.M., Emerging roles of exosomes in neuron-glia communication, Front. Physiol., 2012, 3, 119 Frühbeis C., Fröhlich D., Kuo W.P., Amphornrat J., Thilemann S., Saab A.S., et al., Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication, PLoS Biol., 2013, 11, e1001604 Feliciano D.M., Zhang S., Nasrallah C.M., Lisgo S.N., Bordey A., Embryonic cerebrospinal fluid nanovesicles carry evolutionarily conserved molecules and promote neural stem cell amplification, PLoS One, 2014, 9, e88810 An K., Klyubin I., Kim Y., Jung J.H., Mably A.J., O’Dowd S.T., et al., Exosomes neutralize synaptic-plasticity-disrupting activity of Aβ assemblies in vivo, Mol. Brain, 2013, 6, 47 Manterola L., Guruceaga E., Gállego Pérez-Larraya J., González-Huarriz M., Jauregui P., Tejada S., et al., A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool, Neuro Oncol., 2014, 16, 520–527 Perkins D.O., Jeffries C.D., Jarskog L.F., Thomson J.M., Woods K., Newman M.A., et al., microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder, Genome Biol., 2007, 8, R27 Santarelli D.M., Beveridge N.J., Tooney P.A., Cairns M.J., Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia, Biol. Psychiatry, 2011, 69, 180–187 Beveridge N.J., Gardiner E., Carroll A.P., Tooney P.A., Cairns M.J., Schizophrenia is associated with an increase in cortical microRNA biogenesis, Mol. Psychiatry, 2010, 15, 1176–1189 Beveridge N.J., Tooney P.A., Carroll A.P., Gardiner E., Bowden N., Scott R.J., et al., Dysregulation of miRNA 181b in the temporal cortex in schizophrenia, Hum. Mol. Genet., 2008, 17, 1156–1168 Miller B.H., Zeier Z., Xi L., Lanz T.A., Deng S., Strathmann J., et al., MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function, Proc. Natl. Acad. Sci. USA, 2012, 109, 3125–3130 Moreau M.P., Bruse S.E., David-Rus R., Buyske S., Brzustowicz L.M., Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder, Biol. Psychiatry, 2011, 69, 188–193 Banigan M.G., Kao P.F., Kozubek J.A., Winslow A.R., Medina J., Costa J., et al., Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients, PLoS One, 2013, 8, e48814 Conkrite K., Sundby M., Mukai S., Thomson J.M., Mu D., Hammond S.M., et al., miR-17∼92 cooperates with RB pathway mutations to promote retinoblastoma, Genes Dev., 2011, 25, 1734–1745 Wong J., Duncan C.E., Beveridge N.J., Webster M.J., Cairns M.J., Weickert C.S., Expression of NPAS3 in the human cortex and evidence of its posttranscriptional regulation by miR-17 during development, with implications for schizophrenia, Schizophr. Bull., 2013, 39, 396–406 Barbato C., Ruberti F., Pieri M., Vilardo E., Costanzo M., Ciotti M. T., et al., MicroRNA-92 modulates K(+) Cl(−) co-transporter KCC2 expression in cerebellar granule neurons, J. Neurochem., 2010, 113, 591–600 Shi W., Du J., Qi Y., Liang G., Wang T., Li S., et al., Aberrant expression of serum miRNAs in schizophrenia, J. Psychiatr. Res., 2012, 46, 198–204 Khanna A., Muthusamy S., Liang R., Sarojini H., Wang E., Gain of survival signaling by down-regulation of three key miRNAs in brain of calorie-restricted mice, Aging, 2011, 3, 223–236 Finnerty J.R., Wang W.X., Hébert S.S., Wilfred B.R., Mao G., Nelson P.T., The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases, J. Mol. Biol., 2010, 402, 491–509 Gardiner E., Beveridge N.J., Wu J.Q., Carr V., Scott R.J., Tooney P.A., et al., Imprinted DLK1-DIO3 region of 14q32 defines a schizophreniaassociated miRNA signature in peripheral blood mononuclear cells, Mol. Psychiatry, 2012, 17, 827–840 Kapinas K., Kessler C.B., Delany A.M., miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling, J. Cell. Biochem., 2009, 108, 216–224 Valvezan A.J., Klein P.S., GSK-3 and Wnt signaling in neurogenesis and bipolar disorder, Front. Mol. Neurosci., 2012, 5, 1 Lai C.Y., Yu S.L., Hsieh M.H., Chen C.H., Chen H.Y., Wen C.C., et al., MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia, PLoS One, 2011, 6, e21635 Rong H., Liu T.B., Yang K.J., Yang H.C., Wu D.H., Liao C.P., et al., MicroRNA-134 plasma levels before and after treatment for bipolar mania, J. Psychiatr. Res., 2011, 45, 92–95 Zhang W.D., Yu X., Fu X., Huang S., Jin S.J., Ning Q., et al., MicroRNAs function primarily in the pathogenesis of human anencephaly via the mitogen-activated protein kinase signaling pathway, Genet. Mol. Res., 2014, 13, 1015–1029 Zhang Y., Kim J., Mueller A.C., Dey B., Yang Y., Lee D.H., et al. Multiple receptor tyrosine kinases converge on microRNA-134 to control KRAS, STAT5B, and glioblastoma, Cell Death Differ., 2014, 21, 720–734 Niu C.S., Yang Y., Cheng C.D., MiR-134 regulates the proliferation and invasion of glioblastoma cells by reducing Nanog expression, Int. J. Oncol., 2013, 42, 1533–1540 Sheinerman K.S., Tsivinsky V.G., Abdullah L., Crawford F., Umansky S.R., Plasma microRNA biomarkers for detection of mild cognitive impairment: biomarker validation study, Aging, 2013, 5, 925–938 Henshall D.C., MicroRNAs in the pathophysiology and treatment of status epilepticus, Front. Mol. Neurosci., 2013, 6, 37 Gaughwin P., Ciesla M., Yang H., Lim B., Brundin P., Stage-specific modulation of cortical neuronal development by Mmu-miR-134, Cereb. Cortex, 2011, 21, 1857–1869 Han L., Wen Z., Lynn R.C., Baudet M.L., Holt C.E., Sasaki Y., et al., Regulation of chemotropic guidance of nerve growth cones by microRNA, Mol. Brain, 2011, 4, 40 Christensen M., Larsen L.A., Kauppinen S., Schratt G., Recombinant adeno-associated virus-mediated microRNA delivery into the postnatal mouse brain reveals a role for miR-134 in dendritogenesis in vivo, Front. Neural Circuits, 2010, 3, 16 Bicker S., Khudayberdiev S., Weiβ K., Zocher K., Baumeister S., Schratt G., The DEAH-box helicase DHX36 mediates dendritic localization of the neuronal precursor-microRNA-134, Genes Dev., 2013, 27, 991–996 Gao J., Wang W.Y., Mao Y.W., Gräff J., Guan J.S., Pan L., et al., A novel pathway regulates memory and plasticity via SIRT1 and miR-134, Nature, 2010, 466, 1105–1109 Zhao Y.N., Li W.F., Li F., Zhang Z., Dai Y.D., Xu A.L., et al., Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway, Biochem. Biophys. Res. Commun., 2013, 435, 597–602 The Schizophrenia Psychiatric Genome-Wide Association Study Consortium, Genome-wide association study identifies five new schizophrenia loci, Nat. Genet., 2011, 43, 969–976 Strazisar M., Cammaerts S., van der Ven K., Forero D.A., Lenaerts A.S., Nordin A., et al., MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets, Mol. Psychiatry, 2014, Epub ahead of print, DOI: 10.1038/mp.2014.53 van Erp T.G., Guella I., Vawter M.P., Turner J., Brown G.G., McCarthy G., et al., Schizophrenia miR-137 locus risk genotype is associated with dorsolateral prefrontal cortex hyperactivation, Biol. Psychiatry, 2014, 75, 398–405 Guella I., Sequeira A., Rollins B., Morgan L., Torri F., van Erp T.G., et al., Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex, J. Psychiatr. Res., 2013, 47, 1215–1221 Kwon E., Wang W., Tsai L.H., Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets, Mol. Psychiatry, 2013, 18, 11–12 Geekiyanage H., Jicha G.A., Nelson P.T., Chan C., Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease, Exp. Neurol., 2012, 235, 491–496 Koshkin P.A., Chistiakov D.A., Nikitin A.G., Konovalov A.N., Potapov A.A., Usachev D.Y., et al., Analysis of expression of microRNAs and genes involved in the control of key signaling mechanisms that support or inhibit development of brain tumors of different grades, Clin. Chim. Acta, 2014, 430, 55–62 Leidinger P., Backes C., Meder B., Meese E., Keller A., The human miRNA repertoire of different blood compounds, BMC Genomics, 2014, 15, 474 Chivet M., Hemming F., Pernet-Gallay K., Fraboulet S., Sadoul R., Emerging role of neuronal exosomes in the central nervous system, Front. Physiol., 2012, 3, 145 Pusic A.D., Pusic K.M., Clayton B.L., Kraig R.P., IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination, J. Neuroimmunol., 2014, 266, 12–23 Zhuang X., Xiang X., Grizzle W., Sun D., Zhang S., Axtell R.C., et al., Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain, Mol. Ther., 2011, 19, 1769–1779 Alvarez-Erviti L., Seow Y., Yin H., Betts C., Lakhal S., Wood M.J., Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes, Nat. Biotechnol., 2011, 29, 341–345 Lakhal S., Wood M.J., Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers, Bioessays, 2011, 33, 737–741