Der gegenwärtige Stand der stochastischen Programmierung
Tóm tắt
Wenn in einem linearen Programm einige oder alle Koeffizienten Zufallsvariable sind, verliert die Zielsetzung dieses linearen Programmes offenbar ihren Sinn. Die dann auftretenden neuen Problemstellungen, die bisher in der Literatur behandelt wurden, sollen in dieser Arbeit diskutiert werden: Das Verteilungsproblem, das Programm mit Wahrscheinlichkeitsrestriktionen und das zweistufige Problem.
Tài liệu tham khảo
Bereanu, B: On stochastic linear programming I. Revue de mathématiques pures et appliquées 8 (1963), 683–697.
——: On stochastic linear programming II. Revue Roum. math. pures et appl. 11 (1966), 713–725.
——: On stochastic linear programming. The Laplace transform of the distribution of the optimum and applications. J. of Mathematical Analysis and Applications 15 (1966), 280–294.
——: On stochastic linear programming distribution problems, stochastic technology matrix. Z. Wahrscheinlichkeitstheorie verw. Geb. 8 (1967), 148–152.
Charnes, A. andW. W. Cooper: Chance constrained programming. Management Science 6 (1959), 73–79.
—— ——: Deterministic equivalents for optimizing and satisficing under chance constraints. Operations Research 11 (1963), 18–39.
Charnes, A., W. W. Cooper andG. L. Thompson: Constrained generalized medians and hypermedians as deterministic equivalents for two-stage linear programs under uncertainty. Management Science 12 (1965), 83–112.
Charnes, A. andM. J. L. Kirby: Optimal decision rules for theE-model of chance-constrained programming. Cahiers du Centre d'Etudes de Recherche Operationnelle 8 (1966), 5–44.
Dantzig, G. B.: Lineare Programmierung und Erweiterungen. (Deutsche Bearbeitung vonA. Jaeger). Springer, Berlin (1966).
El Agizy, M.: Two-stage programming under uncertainty with discrete distribution function. Operations Research 15 (1967), 55–70.
Elmaghraby, S. E.: An approach to linear programming under uncertainty. Operations Research 7 (1959), 208–216.
Hadley, G.: Nonlinear and dynamic programming. Addison-Wesley. Reading (Mass.) (1964).
Kall, P.: Qualitative Aussagen zu einigen Problemen der stochastischen Programmierung. Z. Wahrscheinlichkeitstheorie verw. Geb. 6 (1966), 246–272.
——: Das zweistufige Problem der stochastischen linearen Programmierung. Z. Wahrscheinlichkeitstheorie verw. Geb. 8 (1967), 101–112.
——: Produktionsoptimierung mit Hilfe der stochastischen Programmierung. Industrielle Organisation 36 (1967), 427–432.
Kirby, M. J. L.: The current state of chance constrained programming. Systems Research Memorandum No. 181, Northwestern University, Evanston, Ill. (1967).
Madansky, A.: Inequalities for stochastic linear programming problems. Management Science 6 (1960), 197–204.
——: Methods of solution of linear programs under uncertainty. Operations Research 10 (1962), 463–471.
Moeseke, P. van, andG. Tintner: Base duality theorem for stochastic and parametric linear programming. Unternehmensforschung 8 (1964), 75–79.
Prékopa, A.: On probabilistic constrained programming. Vortrag am Mathematical Programming Symposium, Princeton University, August 1967.
Sengupta, J. K., G. Tintner andC. Millham: On some theorems of stochastic linear programming with applications. Management Science 10 (1964), 143–159.
Tintner, G.: Stochastic linear programming with applications to agricultural economics. Proc. 2nd Sympos. Lin. Programming (H. Antosiewicz, ed.), Washington, D. C. (1955).
Tintner, G., C. Millham andJ. K. Sengupta: A weak duality theorem for stochastic linear programming. Unternehmensforschung 7 (1963), 1–8.
Van Slike, R. andR. Wets: Programming under uncertainty and stochastic optimal control. J. SIAM Control 4 (1966), 179–193.
Walkup, D. W. andR. Wets: Stochastic programs with recourse. Boeing Document D 1-82-0551, Boeing Scientific Research Laboratories, Seattle, Washington (1966).
Wets, R.: Programming under uncertainty: The complete problem. Z. Wahrscheinlichkeits-theorie verw. Geb. 4 (1966), 316–339.
——: Programming under uncertainty: The equivalent convex program. J. SIAM Appl. Math. 14 (1966), 89–105.
——: Programming under uncertainty: The solution set. J. SIAM Appl. Math. 14 (1966), 1143–1151.
Williams, A. C.: On stochastic linear programming. J. SIAM Appl. Math. 13 (1965), 927–940.
——: Approximation formulas for stochastic linear programming. J. SIAM Appl. Math. 14 (1966), 668–677.