Der Zyklus Belastung – Adaptation

Manuelle Medizin - Tập 49 - Trang 335-343 - 2011
W. Laube1
1-, Altach, Österreich

Tóm tắt

Der Organismus benötigt Belastung, um die Organe und ihr Zusammenspiel strukturell und funktionell zu entwickeln, zu erhalten und die Alterungsprozesse zu beeinflussen. Zum Vollzug der Leistungsvorgabe, der Belastung, realisiert der Organismus einen biologischen Aufwand, die Beanspruchung, und es entsteht eine beanspruchungsspezifische Ermüdung. Essenziell für alle Erholungsprozesse (Restitution, Reparatur, Adaptation) sind die Beanspruchungen der anabolen hormonellen, parakrinen und autokrinen Systeme. Sie vermitteln alle strukturellen Vorgänge in der Erholung. Herausragend ist die Achse Wachstumshormon – insulinähnlicher Wachstumsfaktor der Leber, aber auch der Körperzellen und die Testosteronproduktion. Die Hormone sichern zunächst die restitutiven und reparativen Prozesse. Diese gehen fließend in die anabolen Vorgänge über. Sie repräsentieren das Ergebnis der Beanspruchung, zu erkennen an der Funktions- und Leistungsfähigkeit. Inaktivität führt zu einem negativen Zyklus, wodurch es zu Atrophie und Funktionsverlust bis hin zur Degeneration kommt. Der Zyklus ist auch in die Prävention und Therapie von Schmerzen involviert. Zum einen haben während der Bewegungsausführung sowohl die zentralen motorischen Efferenzen als auch die propriorezeptiven Afferenzen einen hemmenden Einfluss auf die schmerzrelevanten Neuronenpopulationen im Hinterhorn. Zum anderen beteiligen sich die sensomotorischen Gehirnareale mit Strukturveränderungen an der Chronifizierung des Schmerzes.

Tài liệu tham khảo

Adams GR (1998) The role of IGF-I in the regulation of skeletal muscle adaptation. In: Holloszy JR (Hrsg) Exercise and sport science reviews, Bd. 26. Williams & Wilkins, Baltimore, S 31–60 AdamsGR, McCue SA (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84:1716–1722 Baldwin KM, Haddad F (2002) Skeletal muscle plasticity: cellular and molecular responses tp altered physical activity paradigms. Am J Phys Med Rehabil 81:S40–S51 Bengtson CP, Dick O, Bading H (2008) A quantitative method to assess extrasynaptic NMDA receptor function in the protective effect of synaptic activity against neurotoxicity. BMC Neurosci 24:9–11 Bickel CS, Slade JM, Haddad F et al (2003) Acute molecular responses of skeletal muscle to resistance exercise in able-bodied and spinal cord-injured subjects. J Appl Physiol 94:2255–2262 Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22:123–131 Bondy CA, Lee WH (1993) Patterns of insulin-like growth factor and IGF receptor gene expression in the brain. Functional implications. Ann N Y Acad Sci 692:33–43 Borg G (1961) Perceived exertion in relation to physical work load and puls-rate. Kungliga Fysiografisca Sallskapets I Lund Forhandlingar 31:105–115 Borg G (1961) Interindividual scaling and perception of muscular force. Kungliga Fysiografisca Sallskapets I Lund Forhandlingar 31:117–125 Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381 Cadore EL, Lhullier FL, Brentano MA et al (2008) Hormonal responses to resistance exercise in long-term trained and untrained middle-aged men. J Strength Cond Res 22:1617–2624 Chang HC, Yang YR, Wang PS et al (2011) IGF-I signaling for brain recovery and exercise ability in brain ischemic rats. Med Sci Sports Exerc 20 (im Druck) Coelho FM, Pereira DS, Lustosa LP et al (2011) Physical therapy intervention (PTI) increases plasma brain-derived neurotrophic factor (BDNF) levels in non-frail and pre-frail elderly women. Arch Gerontol Geriatr 16. (im Druck) Carro E, Spuch C, Trejo JL et al (2005) Choroid plexus megalinm is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci 25:10884–10893 Carro E, Trejo JL, Gomez-Isla T et al (2000) Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 8:1390–1397 Dunn SE (2000) Insulin-like growth factor I stimulates angiogenesis and production of vascular endothelial growth factor. Growth Horm IGF Res 10(Suppl A):4–42 Fernandez AM, Gonzales de la Vega AG, Planas B, Torres-Aleman I (1999) Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. Eur J Neurosci 11:2019–2030 García-Mesa Y, López-Ramos JC, Giménez-Llort L et al (2011) Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J Alzheimers Dis 24:421–454 Goldspink G (2003) Gene expression in muscle in response to exercise. J Muscle Res Cell Motil 24:121–126 Haddad F, Adams GR (2002) Selected contribution: acute cellular and molecular responses to resistance exercise. J Appl Physiol 93:394–403 Haddad F, Adams GR (2006) Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J Appl Physiol 100:1188–1203 Hameed M, Orrell RW, Cobbold M et al (2003) Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547:247–254 Heinemeier KM, Olesen JL, Schjerling P et al (2007) Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol 102:573–581 Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 549:409–418 Ide K, Secher NH (2000) Cerebral blood flow and metabolism during exercise. Prog Neurobiol 61:397–414 Jones SW, Hill RJ, Krasney PA et al (2004) Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. FASEB J 18:1025–1027 Kavey RE, Daniels SR, Lauer RM et al (2003) American Heart Association guidelines for primary prevention of atherosclerotic cardiovascular disease beginning in childhood. American Heart Association. J Pediatr 142:368–372 Kinni H, Guo M, Ding JY et al (2011) Cerebral metabolism after forced or voluntary physical exercise. Brain Res 146:48–55 Künstlinger U (2004) Bewegungsmangel bei Kindern – Fakt oder Fiktion? 3. Konferenz des Clubs of Cologne, 4. 12. 2003 in Köln. Dtsch Z Sportmed 55:29–30 Kunz T (1993) Weniger Unfälle durch Bewegung: Mit Bewegungsspielen gegen Unfälle und Gesundheitsschäden bei Kindergartenkindern. Hofmann, Schorndorf Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35:339–361 Laube W (1990) Zur Rückführung des vegetativ-chronotropen Tonus, der Erholung im neuromuskulären System und den Wechselbeziehungen zwischen beiden Funktionssystemen nach Auslösung einer identischen anaeroben Stoffwechselsituation durch verschiedene Belastungsarten. Dissertation B (Dr. med. sc.), Humboldt-Universität zu Berlin, Bereich Medizin Charité, Physiologisches Institut Laube W (Hrsg) (2009) Sensomotorisches System. Thieme, Stuttgart Laube W (2009) Physiologie der Hauptbeanspruchungen des sensomotorischen Systems. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, New York, S 165–227 Laube W (2009) Diagnostik der Leistungen des Sensomotorischen Systems: Koordination – Ausdauer – Kraft. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 228–274 Laube W (2009) Deadaptationsprozesse durch Inaktivität und Immobilisation. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 370–374 Laube W (2009) Physiologie des Zyklus Belastung – Beanspruchung – Ermüdung – Erholung – Adapatation. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 499–555 Laube W (2009) Training der Sensomotorischen Hauptbeanspruchungsformen Koordination, Ausdauer und Kraft. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 556–600 und 617–637 Lefaucheur J-P, Drouot X, Cunin P et al (2009) Motor cortex stimulation for the treatment of refractory peripheral neuropathic pain. Brain 132:1463–1417 Leite RD, Prestes J, Rosa C et al (2011) Acute effect of resistance training volume on hormonal responses in trained men. J Sports Med Phys Fitness 51:322–328 Lopez-Lopez C, LeRoith D, Torres-Aleman I (2004) Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci U S A 101:9833–9838 Maihöfner C, Handwerker HO, Neundörfer B, Birklein F (2003) Cortical reorganization during recovery from complex regional pain syndrome. Neurology 63:693–701 Matsakas A, Friedel A, Hertrampf T, Diel P (2005) Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat. Acta Physiol Scand 183:299–307 Matsakas A, Diel P (2005) The growth factor myostatin, a key regulator in skeletal muscle growth and homöostasis. Int J Sports Med 26:83–89 Noble BJ, Robertson RJ (1996) The borg scale: development, administration, and experimental use. In: Noble BJ, Robertson RJ (Hrsg) Perceived exertion. Human Kinetics, Champaign, IL, S 59–92 Peyron R, Garcìa-Larrea L, Grègoire MC et al (1999) Haemodynamic brain responses to acute pain in humans. Brain 122:1765–1779 Poehlman ET, Copeland KC (1990) Influence of physical activity on insulin-like growth factor-1 in healthy younger and older men. J Clin Endocrinol Metab 71:1468–1473 Pritzlaff CJ, Wideman L, Weltman JY et al (1999) Impact of acute exercise intensity on pulsatile growth hormone release in men. J Appl Physiol 87:498–504 Radaka Z, Kanekob T, Taharab S et al (2001) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 38:17–23 Raue U, Slivka D, Jemiolo B et al (2006) Myogenic gene expression at rest and following a bout of resistance exercise in young (18–30 Yr) and old (80–89 Yr) women. J Appl Physiol 101:53–59 Rojas-Piloni G, Martínez-Lorenzana G, Condés-Lara M, Rodríguez-Jiménez J (2010) Direct sensorimotor corticospinal modulation of dorsal horn neuronal C-fiber responses in the rat. Brain Res 1351:104–114 Sonntag WE, Lynch CD, Cooney PT, Hutchins PM (1997) Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor-I. Endocrinology 138:3515–3520 Torres-Aleman I (2001) Serum neurotrophic factors and neuroprotective surveillance: focus on IGF-I. Mol Neurobiol 21:153–160 Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634 Praag H van, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesisin the adult mouse dentate gyrus. Nat Neurosci 2:266–270 Praag H van, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96:13427–13431 Walsh NP, Gleeson M, Shephard RJ et al (2011) Position statement. Part one: Immune function and exercise. Exerc Immunol Rev 17:6–63 Zhang SJ, Buchthal B, Lau D et al (2011) A signaling cascade of nuclear calcium-CREB-ATF3 activated by synaptic NMDA receptors defines a gene repression module that protects against extrasynaptic NMDA receptor-induced neuronal cell death and ischemic brain damage. J Neurosci 31:4978–4990