Depth estimation from image structure
IEEE Transactions on Pattern Analysis and Machine Intelligence - Tập 24 Số 9 - Trang 1226-1238 - 2002
Tóm tắt
In the absence of cues for absolute depth measurements as binocular disparity, motion, or defocus, the absolute distance between the observer and a scene cannot be measured. The interpretation of shading, edges, and junctions may provide a 3D model of the scene but it will not provide information about the actual "scale" of the space. One possible source of information for absolute depth estimation is the image size of known objects. However, object recognition, under unconstrained conditions, remains difficult and unreliable for current computational approaches. We propose a source of information for absolute depth estimation based on the whole scene structure that does not rely on specific objects. We demonstrate that, by recognizing the properties of the structures present in the image, we can infer the scale of the scene and, therefore, its absolute mean depth. We illustrate the interest in computing the mean depth of the scene with application to scene recognition and object detection.
Từ khóa
#Layout #Motion measurement #Information resources #Object recognition #Image recognition #Object detectionTài liệu tham khảo
10.1016/S0042-6989(97)00008-4
10.1023/A:1026553619983
rogowitz, 1998, Perceptual Image Similarity Experiments, Proc SPIE Conf Human Vision and Electronic Imaging
palmer, 1999, Vision Science
10.1038/381607a0
10.1109/TPAMI.1984.4767591
papoulis, 1984, Probability random variables and stochastic processes
10.1109/34.506794
10.1023/A:1011139631724
oliva, 1999, Global Semantic Classification of Scenes Using Power Spectrum Templates, Proc Challenge of Image Retrieval
10.1023/A:1007925832420
10.1016/S0364-0213(99)80027-5
10.1016/0004-3702(81)90021-7
lindeberg, 1998, Principles for Automatic Scale Selection, Int'l J Computer Vision, 30, 77
gershnfeld, 1999, The Nature of Mathematical Modeling
10.1007/BF01469346
10.1364/JOSAA.4.002379
lee, 2001, Occlusion Models for Natural Images: A Statistical Study of a Scale-Invariant Dead Leaves Model, Int'l J Computer Vision, 41, 35, 10.1023/A:1011109015675
de bonet, 1997, Structure Driven Image Database Retrieval, Advances in Neural Information Processing, 10, 866
10.1109/TPAMI.1987.4767956
10.1109/ICCV.1999.790349
10.1109/IVL.1997.629719
10.1016/S0031-3203(98)00079-X
bergen, 1991, Computational Modeling of Visual Texture Segregation, Computational Models of Visual Processing, 253
10.1109/ICCV.2001.937604
10.1109/ICCV.2001.937654
10.1109/ICCV.1999.790424
10.1088/0954-898X_3_1_008
10.1109/CAIVD.1998.646032
10.1109/ICPR.1994.576325
10.1109/34.385983
10.1146/annurev.neuro.24.1.1193
10.1109/ICIP.1995.537667
10.1162/neco.1994.6.2.181
shimshoni, 2000, Shape Reconstruction of 3D Bilaterally Symmetric Surfaces, Int'l J Computer Vision, 2, 1
10.1017/CBO9780511984037.004
10.1023/A:1008120406972
horn, 1989, Shape from Shading
10.1016/0042-6989(96)00002-8
10.1145/218380.218446