Depth-dependent EBIC microscopy of radial-junction Si micropillar arrays
Tóm tắt
Recent advances in fabrication have enabled radial-junction architectures for cost-effective and high-performance optoelectronic devices. Unlike a planar PN junction, a radial-junction geometry maximizes the optical interaction in the three-dimensional (3D) structures, while effectively extracting the generated carriers via the conformal PN junction. In this paper, we report characterizations of radial PN junctions that consist of p-type Si micropillars created by deep reactive-ion etching (DRIE) and an n-type layer formed by phosphorus gas diffusion. We use electron-beam induced current (EBIC) microscopy to access the 3D junction profile from the sidewall of the pillars. Our EBIC images reveal uniform PN junctions conformally constructed on the 3D pillar array. Based on Monte-Carlo simulations and EBIC modeling, we estimate local carrier separation/collection efficiency that reflects the quality of the PN junction. We find the EBIC efficiency of the pillar array increases with the incident electron beam energy, consistent with the EBIC behaviors observed in a high-quality planar PN junction. The magnitude of the EBIC efficiency of our pillar array is about 70% at 10 kV, slightly lower than that of the planar device (≈ 81%). We suggest that this reduction could be attributed to the unpassivated pillar surface and the unintended recombination centers in the pillar cores introduced during the DRIE processes. Our results support that the depth-dependent EBIC approach is ideally suitable for evaluating PN junctions formed on micro/nanostructured semiconductors with various geometry.
Tài liệu tham khảo
Y.H. Chu, C.Q. Qian, P. Chahal, C.Y. Cao, Printed diodes: Materials processing, fabrication, and applications. Adv. Sci. 6(6), 1801653 (2019). https://doi.org/10.1002/advs.201801653
K.M. Dowling, E.H. Ransom, D.G. Senesky, Profile evolution of high aspect ratio silicon carbide trenches by inductive coupled plasma etching. J. Microelectromech. Syst. 26(1), 135–142 (2017). https://doi.org/10.1109/Jmems.2016.2621131
D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin, CASINO V2.42 - a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29(3), 92–101 (2007). https://doi.org/10.1002/sca.20000
E. Garnett, P.D. Yang, Light trapping in silicon nanowire solar cells. Nano Lett. 10(3), 1082–1087 (2010). https://doi.org/10.1021/nl100161z
H. Han, Z.P. Huang, W. Lee, Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 9(3), 271–304 (2014). https://doi.org/10.1016/j.nantod.2014.04.013
P.M. Haney, H.P. Yoon, B. Gaury, N.B. Zhitenev, Depletion region surface effects in electron beam induced current measurements. J. Appl. Phys. 120(9), 095702 (2016). https://doi.org/10.1063/1.4962016
Z.P. Huang, N. Geyer, P. Werner, J. de Boor, U. Gosele, Metal-assisted chemical etching of silicon: A review. Adv. Mater. 23(2), 285–308 (2011). https://doi.org/10.1002/adma.201001784
B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97(11), 114302 (2005). https://doi.org/10.1063/1.1901835
M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, et al., Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9(3), 239 (2010) <Go to ISI>://WOS:000274700900021
C.E. Kendrick, H.P. Yoon, Y.A. Yuwen, G.D. Barber, H.T. Shen, T.E. Mallouk, et al., Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth. Appl. Phys. Lett. 97(14), 143108 (2010). https://doi.org/10.1063/1.3496044
T. Kobayashi, M. Koyama, T. Sugita, S. Takayanagi, Performance of GaAs surface-barrier detectors made from high-purity gallium-arsenide. IEEE Trans. Nucl. Sci. 19(3), 324–32+ (1972). https://doi.org/10.1109/Tns.1972.4326745
Laermer, F., & Schilp, A. (2003). Method of anisotropic etching of silicon. Patent US6531068 (US)
H.J. Leamy, Charge collection scanning electron-microscopy. J. Appl. Phys. 53(6), R51–R80 (1982). https://doi.org/10.1063/1.331667
K.K. Lew, J.M. Redwing, Growth characteristics of silicon nanowires synthesized by vapor-liquid-solid growth in nanoporous alumina templates. J. Cryst. Growth 254(1–2), 14–22 (2003). https://doi.org/10.1016/S0022-0248(03)01146-1
X.L. Li, Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics. Curr. Opin. Solid State Mater. Sci. 16(2), 71–81 (2012). https://doi.org/10.1016/j.cossms.2011.11.002
G.W. Neudeck, The PN Junction Diode (Addison-Wesley, Reading, 1989)
G.S. Oehrlein, Dry etching damage of silicon - a review. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 4(1-4), 441–450 (1989). https://doi.org/10.1016/0921-5107(89)90284-5
Qian, Y., Magginetti, D. J., Jeon, S., Yoon, Y., Olsen, T. L., Wang, M., et al. (2020). Heterogeneous optoelectronic characteristics of Si micropillar arrays fabricated by metal-assisted chemical etching. https://ui.adsabs.harvard.edu/abs/2020arXiv200616308Q. Accessed 1 June 2020
D.L. Sengupta, T.K. Sarkar, D. Sen, Centennial of the semiconductor diode detector. Proc. IEEE 86(1), 235–243 (1998). https://doi.org/10.1109/5.658775
C.W. Teplin, S. Grover, A. Chitu, A. Limanov, M. Chahal, J. Im, et al., Comparison of thin epitaxial film silicon photovoltaics fabricated on monocrystalline and polycrystalline seed layers on glass. Prog. Photovolt. 23(7), 909–917 (2015). https://doi.org/10.1002/pip.2505
H.D. Um, N. Kim, K. Lee, I. Hwang, J.H. Seo, Y.J. Yu, et al., Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications. Sci. Rep. 5, 11277 (2015). https://doi.org/10.1038/srep11277
D.B. Wittry, D.F. Kyser, Measurement of diffusion lengths in direct-gap semiconductors by electron-beam excitation. J. Appl. Phys. 38(1), 375 (1967). https://doi.org/10.1063/1.1708984
B.Q. Wu, A. Kumar, S. Pamarthy, High aspect ratio silicon etch: A review. J. Appl. Phys. 108(5), 051101 (2010). https://doi.org/10.1063/1.3474652
C.J. Wu, D.B. Wittry, Investigation of minority-carrier diffusion lengths by electron-bombardment of Schottky barriers. J. Appl. Phys. 49(5), 2827–2836 (1978). https://doi.org/10.1063/1.325163
E.B. Yakimov, What is the real value of diffusion length in GaN? J. Alloys Compd. 627, 344–351 (2015). https://doi.org/10.1016/j.jallcom.2014.11.229
J. Yoo, S.A. Dayeh, W. Tang, S.T. Picraux, Epitaxial growth of radial Si p-i-n junctions for photovoltaic applications. Appl. Phys. Lett. 102(9), 093113 (2013). https://doi.org/10.1063/1.4794541
H.P. Yoon, P.M. Haney, J. Schumacher, K. Siebein, Y. Yoon, N.B. Zhitenev, Effects of focused-ion-beam processing on local electrical measurements of inorganic solar cells. Microsc. Microanal. 20(S3), 544–545 (2014). https://doi.org/10.1017/S1431927614004449
H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, et al., Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths. Appl. Phys. Lett. 96(21), 213503 (2010). https://doi.org/10.1063/1.3432449
H.P. Yoon, Y.A. Yuwen, H. Shen, N.J. Podraza, T.E. Mallouk, E.C. Dickey, et al., in 37th IEEE Photovoltaic Specialists Conference. Parametric study of micropillar array solar cells (2011), pp. 000303–000306. https://doi.org/10.1109/PVSC.2011.6185905
A. Zeniou, K. Ellinas, A. Olziersky, E. Gogolides, Ultra-high aspect ratio Si nanowires fabricated with plasma etching: Plasma processing, mechanical stability analysis against adhesion and capillary forces and oleophobicity. Nanotechnology 25(3), 035302 (2014). https://doi.org/10.1088/0957-4484/25/3/035302
R.N. Zhou, M.Z. Yu, D. Tweddle, P. Hamer, D. Chen, B. Hallam, et al., Understanding and optimizing EBIC pn-junction characterization from modeling insights. J. Appl. Phys. 127(2), 024502 (2020). https://doi.org/10.1063/1.5139894