Deprit’s reduction of the nodes revisited
Tóm tắt
We revisit a set of symplectic variables introduced by Andre Deprit (Celest Mech 30, 181–195, 1983), which allows for a complete symplectic reduction in rotation invariant Hamiltonian systems, generalizing to arbitrary dimension Jacobi’s reduction of the nodes. In particular, we introduce an action-angle version of Deprit’s variables, connected to the Delaunay variables, and give a new hierarchical proof of the symplectic character of Deprit’s variables.
Tài liệu tham khảo
Bennett T.L.: On the reduction of the problem of n bodies. Messenger math. XXXIV, 113–120 (1905)
Boigey F.: Élimination des nœuds dans le problème newtonien des quatre corps. Celest. Mech. 27(4), 399–414 (1982)
Chierchia, L., Pinzari, G.: Planetary Birkhoff Normal Forms. Preprint. http://www.mat.uniroma3.it/users/chierchia/WWW/english_version.html#preprints (2010)
Chierchia, L., Pinzari, G.: The Planetary n-body Problem: Symplectic Foliation, Reductions and Invariant Tori. Preprint. http://www.mat.uniroma3.it/users/chierchia/WWW/english_version.html#preprints (2010)
Deprit A.: Elimination of the nodes in problems of n bodies. Celest. Mech. 30(2), 181–195 (1983)
Jacobi C.G.J.: Sur l’élimination des noeuds dans le problème des trois corps. Astronom. Nachr. Bd XX, 81–102 (1842)
Malige F., Robutel P., Laskar J.: Partial reduction in the n-body planetary problem using the angular momentum integral. Celest. Mech. Dyn. Astronom. 84(3), 283–316 (2002)
Radau R.: Sur une transformation des équations différentielles de la dynamique. Ann. Sci. Ecole Norm. Sup. 5, 311–375 (1868)
Whittaker E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies, 4th edn. Cambridge University Press, New York (1959)