Deprit’s reduction of the nodes revisited

Springer Science and Business Media LLC - Tập 109 - Trang 285-301 - 2011
Luigi Chierchia1, Gabriella Pinzari2
1Dipartimento di Matematica, Università Roma Tre, Roma, Italy
2Dipartimento di Matematica ed Applicazioni “R. Caccioppoli”, Università di Napoli “Federico II”, Napoli, Italy

Tóm tắt

We revisit a set of symplectic variables introduced by Andre Deprit (Celest Mech 30, 181–195, 1983), which allows for a complete symplectic reduction in rotation invariant Hamiltonian systems, generalizing to arbitrary dimension Jacobi’s reduction of the nodes. In particular, we introduce an action-angle version of Deprit’s variables, connected to the Delaunay variables, and give a new hierarchical proof of the symplectic character of Deprit’s variables.

Tài liệu tham khảo

Bennett T.L.: On the reduction of the problem of n bodies. Messenger math. XXXIV, 113–120 (1905) Boigey F.: Élimination des nœuds dans le problème newtonien des quatre corps. Celest. Mech. 27(4), 399–414 (1982) Chierchia, L., Pinzari, G.: Planetary Birkhoff Normal Forms. Preprint. http://www.mat.uniroma3.it/users/chierchia/WWW/english_version.html#preprints (2010) Chierchia, L., Pinzari, G.: The Planetary n-body Problem: Symplectic Foliation, Reductions and Invariant Tori. Preprint. http://www.mat.uniroma3.it/users/chierchia/WWW/english_version.html#preprints (2010) Deprit A.: Elimination of the nodes in problems of n bodies. Celest. Mech. 30(2), 181–195 (1983) Jacobi C.G.J.: Sur l’élimination des noeuds dans le problème des trois corps. Astronom. Nachr. Bd XX, 81–102 (1842) Malige F., Robutel P., Laskar J.: Partial reduction in the n-body planetary problem using the angular momentum integral. Celest. Mech. Dyn. Astronom. 84(3), 283–316 (2002) Radau R.: Sur une transformation des équations différentielles de la dynamique. Ann. Sci. Ecole Norm. Sup. 5, 311–375 (1868) Whittaker E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies, 4th edn. Cambridge University Press, New York (1959)