Deposition, characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated Zircaloy-4
Tóm tắt
Từ khóa
Tài liệu tham khảo
International Atomic Energy Agency, IAEA Annual Report 2014, 2014.
Zinkle, 2013, Materials challenges in nuclear energy, Acta Mater., 61, 735, 10.1016/j.actamat.2012.11.004
Allen, 2012, Corrosion of zirconium alloys, 49
Steinbrück, 2010, Synopsis and outcome of the QUENCH experimental program, Nucl. Eng. Des., 240, 1714, 10.1016/j.nucengdes.2010.03.021
Hirano, 2012, Insights from review and analysis of the Fukushima Dai-ichi accident, J. Nucl. Sci. Technol., 49, 1, 10.1080/18811248.2011.636538
Bragg-Sitton, 2014, Development of advanced accident – tolerant fuels for commercial LWRs, Nucl. News, 53, 83
Zinkle, 2014, Accident tolerant fuels for LWRs: a perspective, J. Nucl. Mater., 448, 374, 10.1016/j.jnucmat.2013.12.005
Pint, 2014, Material selection for accident tolerant fuel cladding, Metall. Mater. Trans. E, 2, 190
Alat, 2015, Ceramic coating for corrosion (c3) resistance of nuclear fuel cladding, Surf. Coat. Technol., 281, 133, 10.1016/j.surfcoat.2015.08.062
Park, 2015, High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings, Surf. Coat. Technol., 280, 256, 10.1016/j.surfcoat.2015.09.022
Tang, 2017, Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings, Corros. Rev., 35, 141, 10.1515/corrrev-2017-0010
Brachet, 2015, On-going studies at CEA on chromium coated zirconium based nuclear fuel claddings for enhanced Accident Tolerant LWRs Fuel, 31
Van Nieuwenhove, 2015, Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4, J. Nucl. Mater., 467, 260, 10.1016/j.jnucmat.2015.09.041
Barsoum, 2000, The MN + 1AXN phases: a new class of solids; thermodynamically stable nanolaminates, Prog. Solid State Chem., 28, 201, 10.1016/S0079-6786(00)00006-6
Smialek, 2014, Diffusivity in alumina scales grown on Al-MAX phases, Corros. Sci., 91, 1
Tallman, 2013, A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air, Mater. Res. Lett., 1, 115, 10.1080/21663831.2013.806364
Tallman, 2015, Effect of neutron irradiation on select MAX phases, Acta Mater., 85, 132, 10.1016/j.actamat.2014.10.068
Tang, 2017, Oxidation behavior of Ti2AlC in the temperature range of 1400 °C–1600 °C in steam, J. Nucl. Mater., 490, 130, 10.1016/j.jnucmat.2017.03.016
Maier, 2015, Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding, J. Nucl. Mater., 466, 712, 10.1016/j.jnucmat.2015.06.028
Pantano, 2014, High temperature steam oxidation performance of MAX phase (Ti2AlC) coated ZIRLO, 2126
Yeom, 2016, Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate, Thin Solid Films, 615, 202, 10.1016/j.tsf.2016.07.024
Tang, 2017, Synthesis and characterization of Ti2AlC coatings by magnetron sputtering from three elemental targets and ex-situ annealing, Surf. Coat. Technol., 309, 445, 10.1016/j.surfcoat.2016.11.090
Leaffer, 2011, On Raman scattering from selected M2 AC compounds, J. Mater. Res., 22, 2651, 10.1557/JMR.2007.0376
Presser, 2012, First-order Raman scattering of the MAX phases: Ti2AlN, Ti2AlC0.5N0.5 Ti2AlC, (Ti0.5V0.5)2AlC, V2AlC, Ti3AlC2, and Ti3GeC2, J. Raman Spectrosc., 43, 168, 10.1002/jrs.3036
Ferrari, 2000, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61, 14095, 10.1103/PhysRevB.61.14095
Abdulkadhim, 2011, Crystallization kinetics of amorphous Cr2AlC thin films, Surf. Coat. Technol., 206, 599, 10.1016/j.surfcoat.2011.06.003
Wang, 2005, Raman active phonon modes and heat capacities of Ti2AlC and Cr2AlC ceramics: first-principles and experimental investigations, Appl. Phys. Lett., 86
Robertson, 2002, Diamond-like amorphous carbon, Mater. Sci. Eng. R Rep., 37, 129, 10.1016/S0927-796X(02)00005-0
Suman, 2017, Investigation of elevated-temperature mechanical properties of δ-hydride precipitate in Zircaloy-4 fuel cladding tubes using nanoindentation, J. Alloys Compd., 726, 107, 10.1016/j.jallcom.2017.07.321
Wang, 2002, Intermediate-temperature oxidation behavior of Ti2AlC in air, J. Mater. Res., 2974, 10.1557/JMR.2002.0431
Saunders, 2008, The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review, Prog. Mater. Sci., 53, 775, 10.1016/j.pmatsci.2007.11.001
Djebaili, 2015, EDX, and XRD analysis of Al2O3 scales grown on PM2000 alloy, J. Spectrosc., 2015, 6670, 10.1155/2015/868109
Steinbrück, 2015, Deviations from parabolic kinetics during oxidation of zirconium alloys, Zircon. Nucl. Ind., 17, 979
Steinbrück, 2011, Oxidation of advanced zirconium cladding alloys in steam at temperatures in the range of 600–1200 °C, Oxid. Met., 76, 215, 10.1007/s11085-011-9249-3
Smialek, 2015, Kinetic aspects of Ti2AlC MAX phase oxidation, Oxid. Met., 83, 351, 10.1007/s11085-015-9526-7
Frodelius, 2013, Phase stability and initial low-temperature oxidation mechanism of Ti2AlC thin films, J. Eur. Ceram. Soc., 33, 375, 10.1016/j.jeurceramsoc.2012.09.003
Gurrappa, 2000, Factors governing breakaway oxidation of FeCrAl-based alloys, Mater. Corros., 51, 224, 10.1002/(SICI)1521-4176(200004)51:4<224::AID-MACO224>3.0.CO;2-B
Li, 2016, Breakaway oxidation of Ti3AlC2 during long-term exposure in air at 1100 °C, Corros. Sci., 104, 112, 10.1016/j.corsci.2015.12.001
Gherrab, 2013, Oxidation behavior of nano-scaled and micron-scaled TiC powders under air, Int. J. Refract. Met. Hard Mater., 41, 590, 10.1016/j.ijrmhm.2013.07.012
Emmerlich, 2007, Thermal stability of Ti3SiC2 thin films, Acta Mater., 55, 1479, 10.1016/j.actamat.2006.10.010
Onuma, 2004, High temperature oxidation of sintered TiC in an H2O-containing atmosphere, Solid State Ion., 172, 417, 10.1016/j.ssi.2004.02.067
Barsoum, 2001, Oxidation of Tin + 1AlXn (n = 1-3 and X = C, N): II. Experimental results, J. Electrochem. Soc., 148, C551, 10.1149/1.1380256
Cui, 2012, Microstructural evolution during high-temperature oxidation of spark plasma sintered Ti2AlN ceramics, Acta Mater., 60, 1079, 10.1016/j.actamat.2011.11.010
Neumann, 2011
Canovic, 2010, Microstructural investigation of the initial oxidation of the FeCrAlRE alloy Kanthal AF in dry and wet O2 at 600 and 800 °C, J. Electrochem. Soc., 157, C223, 10.1149/1.3391447
Onal, 2003, Water vapor effects on the cyclic oxidation resistance of alumina forming alloys, Mater. High Temp., 20, 327, 10.1179/mht.2003.039
Tallman, 2015, Reactivity of Zircaloy-4 with Ti3SiC2 and Ti2AlC in the 1100–1300 °C temperature range, J. Nucl. Mater., 460, 122, 10.1016/j.jnucmat.2015.02.006
Wang, 2012, Insights into high temperature oxidation of Al2O3-forming Ti3AlC2, Corros. Sci., 58, 95, 10.1016/j.corsci.2012.01.011
Nakamura, 2002, Single-phase interdiffusion in the B2 type intermetallic compounds NiAl, CoAl and FeAl, Intermetallics, 10, 195, 10.1016/S0966-9795(01)00125-X
Feng, 2015, The scaling behavior and mechanism of Ti2AlC MAX phase coatings in air and pure water vapor, Surf. Coat. Technol., 272, 380, 10.1016/j.surfcoat.2015.03.037