Deposition, characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated Zircaloy-4

Corrosion Science - Tập 135 - Trang 87-98 - 2018
Chongchong Tang1, Martin Steinbrueck1, Michael Stueber1, M. Große1, Xiaojuan Yu2, S. Ulrich1, Hans J. Seifert1
1Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
2Institute for Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

International Atomic Energy Agency, IAEA Annual Report 2014, 2014.

Zinkle, 2013, Materials challenges in nuclear energy, Acta Mater., 61, 735, 10.1016/j.actamat.2012.11.004

Allen, 2012, Corrosion of zirconium alloys, 49

Steinbrück, 2010, Synopsis and outcome of the QUENCH experimental program, Nucl. Eng. Des., 240, 1714, 10.1016/j.nucengdes.2010.03.021

Hirano, 2012, Insights from review and analysis of the Fukushima Dai-ichi accident, J. Nucl. Sci. Technol., 49, 1, 10.1080/18811248.2011.636538

Bragg-Sitton, 2014, Development of advanced accident – tolerant fuels for commercial LWRs, Nucl. News, 53, 83

Zinkle, 2014, Accident tolerant fuels for LWRs: a perspective, J. Nucl. Mater., 448, 374, 10.1016/j.jnucmat.2013.12.005

Pint, 2014, Material selection for accident tolerant fuel cladding, Metall. Mater. Trans. E, 2, 190

Alat, 2015, Ceramic coating for corrosion (c3) resistance of nuclear fuel cladding, Surf. Coat. Technol., 281, 133, 10.1016/j.surfcoat.2015.08.062

Park, 2015, High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings, Surf. Coat. Technol., 280, 256, 10.1016/j.surfcoat.2015.09.022

Tang, 2017, Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings, Corros. Rev., 35, 141, 10.1515/corrrev-2017-0010

Brachet, 2015, On-going studies at CEA on chromium coated zirconium based nuclear fuel claddings for enhanced Accident Tolerant LWRs Fuel, 31

Van Nieuwenhove, 2015, Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4, J. Nucl. Mater., 467, 260, 10.1016/j.jnucmat.2015.09.041

Barsoum, 2000, The MN + 1AXN phases: a new class of solids; thermodynamically stable nanolaminates, Prog. Solid State Chem., 28, 201, 10.1016/S0079-6786(00)00006-6

Smialek, 2014, Diffusivity in alumina scales grown on Al-MAX phases, Corros. Sci., 91, 1

Tallman, 2013, A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air, Mater. Res. Lett., 1, 115, 10.1080/21663831.2013.806364

Tallman, 2015, Effect of neutron irradiation on select MAX phases, Acta Mater., 85, 132, 10.1016/j.actamat.2014.10.068

Tang, 2017, Oxidation behavior of Ti2AlC in the temperature range of 1400 °C–1600 °C in steam, J. Nucl. Mater., 490, 130, 10.1016/j.jnucmat.2017.03.016

Maier, 2015, Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding, J. Nucl. Mater., 466, 712, 10.1016/j.jnucmat.2015.06.028

Pantano, 2014, High temperature steam oxidation performance of MAX phase (Ti2AlC) coated ZIRLO, 2126

Yeom, 2016, Laser surface annealing and characterization of Ti2AlC plasma vapor deposition coating on zirconium-alloy substrate, Thin Solid Films, 615, 202, 10.1016/j.tsf.2016.07.024

Tang, 2017, Synthesis and characterization of Ti2AlC coatings by magnetron sputtering from three elemental targets and ex-situ annealing, Surf. Coat. Technol., 309, 445, 10.1016/j.surfcoat.2016.11.090

Leaffer, 2011, On Raman scattering from selected M2 AC compounds, J. Mater. Res., 22, 2651, 10.1557/JMR.2007.0376

Presser, 2012, First-order Raman scattering of the MAX phases: Ti2AlN, Ti2AlC0.5N0.5 Ti2AlC, (Ti0.5V0.5)2AlC, V2AlC, Ti3AlC2, and Ti3GeC2, J. Raman Spectrosc., 43, 168, 10.1002/jrs.3036

Ferrari, 2000, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61, 14095, 10.1103/PhysRevB.61.14095

Abdulkadhim, 2011, Crystallization kinetics of amorphous Cr2AlC thin films, Surf. Coat. Technol., 206, 599, 10.1016/j.surfcoat.2011.06.003

Wang, 2005, Raman active phonon modes and heat capacities of Ti2AlC and Cr2AlC ceramics: first-principles and experimental investigations, Appl. Phys. Lett., 86

Robertson, 2002, Diamond-like amorphous carbon, Mater. Sci. Eng. R Rep., 37, 129, 10.1016/S0927-796X(02)00005-0

Suman, 2017, Investigation of elevated-temperature mechanical properties of δ-hydride precipitate in Zircaloy-4 fuel cladding tubes using nanoindentation, J. Alloys Compd., 726, 107, 10.1016/j.jallcom.2017.07.321

Wang, 2002, Intermediate-temperature oxidation behavior of Ti2AlC in air, J. Mater. Res., 2974, 10.1557/JMR.2002.0431

Saunders, 2008, The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review, Prog. Mater. Sci., 53, 775, 10.1016/j.pmatsci.2007.11.001

Djebaili, 2015, EDX, and XRD analysis of Al2O3 scales grown on PM2000 alloy, J. Spectrosc., 2015, 6670, 10.1155/2015/868109

Steinbrück, 2015, Deviations from parabolic kinetics during oxidation of zirconium alloys, Zircon. Nucl. Ind., 17, 979

Steinbrück, 2011, Oxidation of advanced zirconium cladding alloys in steam at temperatures in the range of 600–1200 °C, Oxid. Met., 76, 215, 10.1007/s11085-011-9249-3

Smialek, 2015, Kinetic aspects of Ti2AlC MAX phase oxidation, Oxid. Met., 83, 351, 10.1007/s11085-015-9526-7

Frodelius, 2013, Phase stability and initial low-temperature oxidation mechanism of Ti2AlC thin films, J. Eur. Ceram. Soc., 33, 375, 10.1016/j.jeurceramsoc.2012.09.003

Gurrappa, 2000, Factors governing breakaway oxidation of FeCrAl-based alloys, Mater. Corros., 51, 224, 10.1002/(SICI)1521-4176(200004)51:4<224::AID-MACO224>3.0.CO;2-B

Li, 2016, Breakaway oxidation of Ti3AlC2 during long-term exposure in air at 1100 °C, Corros. Sci., 104, 112, 10.1016/j.corsci.2015.12.001

Gherrab, 2013, Oxidation behavior of nano-scaled and micron-scaled TiC powders under air, Int. J. Refract. Met. Hard Mater., 41, 590, 10.1016/j.ijrmhm.2013.07.012

Emmerlich, 2007, Thermal stability of Ti3SiC2 thin films, Acta Mater., 55, 1479, 10.1016/j.actamat.2006.10.010

Onuma, 2004, High temperature oxidation of sintered TiC in an H2O-containing atmosphere, Solid State Ion., 172, 417, 10.1016/j.ssi.2004.02.067

Barsoum, 2001, Oxidation of Tin + 1AlXn (n = 1-3 and X = C, N): II. Experimental results, J. Electrochem. Soc., 148, C551, 10.1149/1.1380256

Cui, 2012, Microstructural evolution during high-temperature oxidation of spark plasma sintered Ti2AlN ceramics, Acta Mater., 60, 1079, 10.1016/j.actamat.2011.11.010

Neumann, 2011

Doremus, 2006, Diffusion in alumina, J. Appl. Phys., 100, 101301, 10.1063/1.2393012

Canovic, 2010, Microstructural investigation of the initial oxidation of the FeCrAlRE alloy Kanthal AF in dry and wet O2 at 600 and 800 °C, J. Electrochem. Soc., 157, C223, 10.1149/1.3391447

Onal, 2003, Water vapor effects on the cyclic oxidation resistance of alumina forming alloys, Mater. High Temp., 20, 327, 10.1179/mht.2003.039

Grabke, 1999, Oxidation of NiAl and FeAl, Intermetallics, 7, 1153, 10.1016/S0966-9795(99)00037-0

Tallman, 2015, Reactivity of Zircaloy-4 with Ti3SiC2 and Ti2AlC in the 1100–1300 °C temperature range, J. Nucl. Mater., 460, 122, 10.1016/j.jnucmat.2015.02.006

Wang, 2012, Insights into high temperature oxidation of Al2O3-forming Ti3AlC2, Corros. Sci., 58, 95, 10.1016/j.corsci.2012.01.011

Mishin, 2000, Diffusion in the Ti–Al system, Acta Mater., 48, 589, 10.1016/S1359-6454(99)00400-0

Nakamura, 2002, Single-phase interdiffusion in the B2 type intermetallic compounds NiAl, CoAl and FeAl, Intermetallics, 10, 195, 10.1016/S0966-9795(01)00125-X

Feng, 2015, The scaling behavior and mechanism of Ti2AlC MAX phase coatings in air and pure water vapor, Surf. Coat. Technol., 272, 380, 10.1016/j.surfcoat.2015.03.037

Fröhlich, 2010, Investigations on the oxidation behavior of MAX-phase based Ti2AlC coatings on γ-TiAl, Strateg. Mater. Comput. Des. Ceram. Eng. Sci. Proc., 161, 10.1002/9780470944103.ch16