Dependence of the Conductivity Mechanism and Dielectric Properties of Zinc Oxide Films on the Degree of Lithium Doping
Tóm tắt
The effect of lithium impurity on the dielectric characteristics and the mechanism of conductivity of zinc oxide thin films obtained by the electron beam deposition method was studied. At low frequencies, a strong dispersion of permittivity constants associated with interfacial polarization at grain boundaries was found. It was shown that the frequency dependencies of the conductivity are well described by the Mott theory. It has been established that the mechanism of ac conductivity undergoes qualitative changes with increasing lithium concentration: hopping conductivity is replaced by correlated hops through the barrier and tunneling of small radius polarons. The characteristics of the obtained films indicate the possibility of using them to create a capacitive memory element and a channel of a field-effect transistor.
Tài liệu tham khảo
Aghamalyan, N.R., Hovsepyan, R.K., Poghosyan, A.R., and Lazaryan, V.G., Proc. SPIE, 2004, vol. 560, p. 556790.
Gupta, S., Bag, S., Ganguly, K., Sarkar, I., and Biswas, P., New Delhi, Springer, 2015.
Baladin, A.A. and K.L. Wang. Handbook of Semiconductor Nanostructures and Nanodevices. Los Angeles, American Scientific Publisher, 2006.
Street, R.A. and Mott, N.F., Phys. Rev. Lett., 1975, vol. 35, p. 1293.
Ahmad, M.D.P., Rao, A.V., Babuy, K.S., and Rao, G.N., J. Advanced Dielectrics, 2020, vol. 10, p. 2050017.
Mott, N.F. and Davis, E.A., Electronic Processes in Non-Crystalline Materials. Oxford, 1979.
Street, R.A. and Mott, N.F., Phys. Rev. Lett., 1975, vol. 35, p. 1293.
Jonscher, A.K., Thin Solid Films, 1976, vol. 36, p. 1.
Anderson, P.W., Phys. Rev. Lett., 1975, vol. 34, p. 953.
Elliot, S.R., Philos. Mag. B, 1978, vol. 37, p. 553.
Aghamalyan, N.R., Kafadaryan, E.A., and Hovsepyan, R.K., Effect of Lithium and Gallium Impurities on Opto-Electrical properties of ZnO Films. Chapter 4 in: Trends in Semiconductor Science, New York, Nova Science Publishers, 2005, pp.81–109.
Aghamalyan, N.R., Aslanyan, T.A., Vardanyan, E.S., Kafadaryan, Y.A., Hovsepyan, R.K., Petrosyan, S.I., and Poghosyan, A.R., J. Contemp. Phys., 2012, vol. 47, p. 275.
Studenikin, S.A., Golego, N., and Cocivera, M., J. Appl. Phys., 2000, vol. 87, p. 2413.
Hemalatha, K.S., Sriprakash, G., Ambika Prasad, M.V., Damle, R., and Rukman, K., J Appl. Phys., 2015, vol. 118, p. 154103.
Othman, Z.J., Hafef, O., Matoussi, A., Fabbari, F., Rossi, F., and Salvviati, G., J. Appl. Phys. A, 2017, vol. 123, p. 95.
Chaari, M. and Matoussi, A., Appl. Phys., A, 2014, vol. 116, p. 1149.
Anderson, P.W., Phys. Rev. Lett., 1975, vol. 34, p. 953.
Clarke, D.R., J. Am. Ceram. Soc., 1999, vol. 82, p. 485.
Ohbuchi, Y., Yoshino, J., Okamoto, Y., and Morimoto, J., J. Appl. Phys., 1999, vol. 38, p. 899.
Gavryushin, V., Raciukaitis, G., Juodzbalis, D., Kazlauskas, A., and Kubertavcius, V., J. Cryst. Growth, 1994, vol. 138, p. 924.
Chaari, M. and Matoussi, A., Physica B: Condensed Matter, 2012, vol. 407, p. 3441.
Kılıncë, N., Arda, L., Ztëurk, S.O.Ë., and Ztëurk, Z.Z., Cryst. Res. Technol., 2010, vol. 45, p. 529.
Long, A.R., Adv. Phys., 1982, vol. 31, p. 553.
Gavryushin, V., Raciukaitis, G., Juodzbalis, D., Kazlauskas, A., and Kubertavcius, V., J. Cryst. Growth, 1994, vol. 138, p. 924.
Kao, K.C., Dielectric Phenomena in Solids with Emphasis on Physical Concepts of Electronic Processes, Academic Press, San Diego, 2004.
Bhattacharya, S. and Ghosh, A., Phys. Rev. B, 2003, vol. 68, p. 224202.
Murawski, L., Chung, C.H., and Mackenzie, J.D., J. Non-Cryst. Solids, 1979, vol. 32, p. 91.