Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đa hình nucleotide đơn Q222R của Deoxyribonuclease 1 và tỷ lệ tử vong lâu dài sau nhồi máu cơ tim cấp tính
Tóm tắt
Khi được kích hoạt, bạch cầu trung tính phóng thích các cấu trúc ngoại bào của bạch cầu trung tính (NETs), góp phần vào gánh nặng DNA trong tuần hoàn và chứng huyết khối, bao gồm nhồi máu cơ tim nâng ST (STEMI). Deoxyribonuclease (DNase) 1 phân hủy DNA tuần hoàn và NETs. Hoạt động của DNase thấp hơn tương quan với gánh nặng NET và kích thước nhồi máu. Đa hình nucleotide đơn Q222R của DNase 1, làm suy giảm chức năng của DNase 1, có liên quan đến nhồi máu cơ tim. Chúng tôi đánh giá liệu SNP Q222R có liên quan đến gánh nặng NET tăng trong STEMI và ảnh hưởng đến kết quả lâu dài hay không. Chúng tôi đã tuyển chọn 711 bệnh nhân STEMI trải qua can thiệp mạch vành qua da (pPCI) và 1422 người đối chứng. Đã tiến hành phân tích gen cho SNP Q222R của DNase 1. Hoạt động của DNase, DNA chuỗi đôi (ds) và histone H3 citrullinated được xác định tại vị trí thủ phạm và huyết tương ngoại vi trong quá trình pPCI. Mối liên hệ của biến thể Q222R đối với tử vong do tim mạch và mọi nguyên nhân được đánh giá bằng hồi quy Cox nhiều biến điều chỉnh cho các yếu tố nguy cơ tim mạch. Biến thể homozygous Q222R của DNase 1 có mặt ở 64 (9,0%) bệnh nhân STEMI, tần suất này giống như ở người đối chứng. Bệnh nhân homozygous cho Q222R thể hiện hoạt động DNase thấp hơn và gánh nặng DNA tuần hoàn tăng. Ở những bệnh nhân tổng thể, thời gian sống trung bình là 60 tháng. Biến thể homozygous Q222R độc lập liên quan đến tử vong do tim mạch và mọi nguyên nhân sau STEMI. Tỷ lệ dsDNA/DNase độc lập dự đoán tử vong do tim mạch và mọi nguyên nhân. Những phát hiện này chỉ ra rằng SNP Q222R của DNase 1 có liên quan đến gánh nặng NET tăng và hoạt động DNase bù trừ giảm, và có thể là một yếu tố nguy cơ độc lập cho kết quả xấu sau STEMI.
Từ khóa
#Deoxyribonuclease 1 #Q222R SNP #nhồi máu cơ tim #bạch cầu trung tính #gánh nặng DNA #tử vong do tim mạchTài liệu tham khảo
Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT (2011) Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost 9:1795–1803. https://doi.org/10.1111/j.1538-7836.2011.04422.x
Aranega AE, Reina A, Muros MA, Alvarez L, Prados J, Aranega A (1993) Circulating alpha-actin protein in acute myocardial infarction. Int J Cardiol 38:49–55
Blikstad I, Markey F, Carlsson L, Persson T, Lindberg U (1978) Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell 15:935–943
Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS, Gallant M, Martinod K, Ten Cate H, Hofstra L, Crijns HJ, Wagner DD, Kietselaer B (2013) Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 33:2032–2040. https://doi.org/10.1161/atvbaha.113.301627
Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, Bhandari AA, Wagner DD (2012) Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 10:136–144. https://doi.org/10.1111/j.1538-7836.2011.04544.x
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535. https://doi.org/10.1126/science.1092385
Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198:773–783. https://doi.org/10.1083/jcb.201203170
Buller CE, Fu Y, Mahaffey KW, Todaro TG, Adams P, Westerhout CM, White HD, van ’t Hof AW, Van de Werf FJ, Wagner GS, Granger CB, Armstrong PW, (2008) ST-segment recovery and outcome after primary percutaneous coronary intervention for ST-elevation myocardial infarction: insights from the Assessment of Pexelizumab in Acute Myocardial Infarction (APEX-AMI) trial. Circulation 118:1335–1346. https://doi.org/10.1161/circulationaha.108.767772
Choy AM, Darbar D, Lang CC, Pringle TH, McNeill GP, Kennedy NS, Struthers AD (1994) Detection of left ventricular dysfunction after acute myocardial infarction: comparison of clinical, echocardiographic, and neurohormonal methods. Br Heart J 72:16–22. https://doi.org/10.1136/hrt.72.1.16
Crimi G, Pica S, Raineri C, Bramucci E, De Ferrari GM, Klersy C, Ferlini M, Marinoni B, Repetto A, Romeo M, Rosti V, Massa M, Raisaro A, Leonardi S, Rubartelli P, Oltrona Visconti L, Ferrario M (2013) Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction: a randomized controlled trial. JACC Cardiovasc Interv 6:1055–1063. https://doi.org/10.1016/j.jcin.2013.05.011
de Lemos JA, Morrow DA, Blazing MA, Jarolim P, Wiviott SD, Sabatine MS, Califf RM, Braunwald E (2007) Serial measurement of monocyte chemoattractant protein-1 after acute coronary syndromes: results from the A to Z trial. J Am Coll Cardiol 50:2117–2124. https://doi.org/10.1016/j.jacc.2007.06.057
Doring Y, Soehnlein O, Weber C (2017) Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circ Res 120:736–743. https://doi.org/10.1161/circresaha.116.309692
Franck G, Mawson TL, Folco EJ, Molinaro R, Ruvkun V, Engelbertsen D, Liu X, Tesmenitsky Y, Shvartz E, Sukhova GK, Michel JB, Nicoletti A, Lichtman A, Wagner D, Croce KJ, Libby P (2018) Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury: implications for superficial erosion. Circ Res 123:33–42. https://doi.org/10.1161/circresaha.117.312494
Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107:15880–15885. https://doi.org/10.1073/pnas.1005743107
Gaitzsch E, Czermak T, Ribeiro A, Heun Y, Bohmer M, Merkle M, Mannell H, Schulz C, Wornle M, Pircher J (2017) Double-stranded DNA induces a prothrombotic phenotype in the vascular endothelium. Sci Rep 7:1112. https://doi.org/10.1038/s41598-017-01148-x
Groot HE, Al Ali L, van der Horst ICC, Schurer RAJ, van der Werf HW, Lipsic E, van Veldhuisen DJ, Karper JC, van der Harst P (2018) Plasma interleukin 6 levels are associated with cardiac function after ST-elevation myocardial infarction. Clin Res Cardiol. https://doi.org/10.1007/s00392-018-1387-z
Hartley A, Marshall DC, Salciccioli JD, Sikkel MB, Maruthappu M, Shalhoub J (2016) Trends in mortality from ischemic heart disease and cerebrovascular disease in Europe: 1980 to 2009. Circulation 133:1916–1926. https://doi.org/10.1161/circulationaha.115.018931
Hofbauer TM, Mangold A, Scherz T, Seidl V, Panzenböck A, Ondracek AS, Müller J, Schneider M, Binder T, Hell L, Lang IM (2019) Neutrophil extracellular traps and fibrocytes in ST-segment elevation myocardial infarction. Basic Res Cardiol 114:33. https://doi.org/10.1007/s00395-019-0740-3
Holle R, Happich M, Lowel H, Wichmann HE (2005) KORA–a research platform for population based health research. Gesundheitswesen 67(Suppl 1):S19-25. https://doi.org/10.1055/s-2005-858235
Jimenez-Alcazar M, Limacher A, Panda R, Mean M, Bitterling J, Peine S, Renne T, Beer JH, Aujesky D, Lammle B, Fuchs TA (2018) Circulating extracellular DNA is an independent predictor of mortality in elderly patients with venous thromboembolism. PLoS ONE 13:e0191150. https://doi.org/10.1371/journal.pone.0191150
Jimenez-Alcazar M, Napirei M, Panda R, Kohler EC, Kremer Hovinga JA, Mannherz HG, Peine S, Renne T, Lammle B, Fuchs TA (2015) Impaired DNase1-mediated degradation of neutrophil extracellular traps is associated with acute thrombotic microangiopathies. J Thromb Haemost 13:732–742. https://doi.org/10.1111/jth.12796
Jimenez-Alcazar M, Rangaswamy C, Panda R, Bitterling J, Simsek YJ, Long AT, Bilyy R, Krenn V, Renne C, Renne T, Kluge S, Panzer U, Mizuta R, Mannherz HG, Kitamura D, Herrmann M, Napirei M, Fuchs TA (2017) Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science 358:1202–1206. https://doi.org/10.1126/science.aam8897
Joseph G, Zaremba T, Johansen MB, Ekeloef S, Heiberg E, Engblom H, Jensen SE, Sogaard P (2019) Echocardiographic global longitudinal strain is associated with infarct size assessed by cardiac magnetic resonance in acute myocardial infarction. Echo Res Pract 6:81–89. https://doi.org/10.1530/erp-19-0026
Kawai Y, Yoshida M, Arakawa K, Kumamoto T, Morikawa N, Masamura K, Tada H, Ito S, Hoshizaki H, Oshima S, Taniguchi K, Terasawa H, Miyamori I, Kishi K, Yasuda T (2004) Diagnostic use of serum deoxyribonuclease I activity as a novel early-phase marker in acute myocardial infarction. Circulation 109:2398–2400. https://doi.org/10.1161/01.cir.0000129232.61483.43
Kumamoto T, Kawai Y, Arakawa K, Morikawa N, Kuribara J, Tada H, Taniguchi K, Tatami R, Miyamori I, Kominato Y, Kishi K, Yasuda T (2006) Association of Gln222Arg polymorphism in the deoxyribonuclease I (DNase I) gene with myocardial infarction in Japanese patients. Eur Heart J 27:2081–2087. https://doi.org/10.1093/eurheartj/ehl177
Laridan E, Denorme F, Desender L, Francois O, Andersson T, Deckmyn H, Vanhoorelbeke K, De Meyer SF (2017) Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 82:223–232. https://doi.org/10.1002/ana.24993
Libby P (2013) Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med 368:2004–2013. https://doi.org/10.1056/NEJMra1216063
Liu J, Yang D, Wang X, Zhu Z, Wang T, Ma A, Liu P (2019) Neutrophil extracellular traps and dsDNA predict outcomes among patients with ST-elevation myocardial infarction. Sci Rep 9:11599. https://doi.org/10.1038/s41598-019-47853-7
Luo L, Zhang S, Wang Y, Rahman M, Syk I, Zhang E, Thorlacius H (2014) Proinflammatory role of neutrophil extracellular traps in abdominal sepsis. Am J Physiol Lung Cell Mol Physiol 307:L586-596. https://doi.org/10.1152/ajplung.00365.2013
Mangold A, Alias S, Scherz T, Hofbauer T, Jakowitsch J, Panzenbock A, Simon D, Laimer D, Bangert C, Kammerlander A, Mascherbauer J, Winter MP, Distelmaier K, Adlbrecht C, Preissner KT, Lang IM (2015) Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res 116:1182–1192. https://doi.org/10.1161/circresaha.116.304944
Mangold A, Hofbauer TM, Ondracek AS, Artner T, Scherz T, Speidl WS, Krychtiuk KA, Sadushi-Kolici R, Jakowitsch J, Lang IM (2019) Neutrophil extracellular traps and monocyte subsets at the culprit lesion site of myocardial infarction patients. Sci Rep 9:16304. https://doi.org/10.1038/s41598-019-52671-y
Martinod K, Witsch T, Erpenbeck L, Savchenko A, Hayashi H, Cherpokova D, Gallant M, Mauler M, Cifuni SM, Wagner DD (2017) Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J Exp Med 214:439–458. https://doi.org/10.1084/jem.20160530
Megens RT, Vijayan S, Lievens D, Doring Y, van Zandvoort MA, Grommes J, Weber C, Soehnlein O (2012) Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost 107:597–598. https://doi.org/10.1160/th11-09-0650
Merkle M, Pircher J, Mannell H, Krotz F, Blum P, Czermak T, Gaitzsch E, Schneider C, Koppel S, Ribeiro A, Wornle M (2015) LL37 inhibits the inflammatory endothelial response induced by viral or endogenous DNA. J Autoimmun 65:19–29. https://doi.org/10.1016/j.jaut.2015.07.015
Napirei M, Ludwig S, Mezrhab J, Klockl T, Mannherz HG (2009) Murine serum nucleases–contrasting effects of plasmin and heparin on the activities of DNase1 and DNase1-like 3 (DNase1l3). Febs j 276:1059–1073. https://doi.org/10.1111/j.1742-4658.2008.06849.x
Napirei M, Ricken A, Eulitz D, Knoop H, Mannherz HG (2004) Expression pattern of the deoxyribonuclease 1 gene: lessons from the Dnase1 knockout mouse. Biochem J 380:929–937. https://doi.org/10.1042/bj20040046
Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, The SHK, Xu XF, Ireland MA, Lenderink T, Latchem D, Hoogslag P, Jerzewski A, Nierop P, Whelan A, Hendriks R, Swart H, Schaap J, Kuijper AFM, van Hessen MWJ, Saklani P, Tan I, Thompson AG, Morton A, Judkins C, Bax WA, Dirksen M, Alings MMW, Hankey GJ, Budgeon CA, Tijssen JGP, Cornel JH, Thompson PL (2020) Colchicine in patients with chronic coronary disease. N Engl J Med. https://doi.org/10.1056/NEJMoa2021372
Pisetsky DS (2016) Anti-DNA antibodies–quintessential biomarkers of SLE. Nat Rev Rheumatol 12:102–110. https://doi.org/10.1038/nrrheum.2015.151
Quillard T, Araujo HA, Franck G, Shvartz E, Sukhova G, Libby P (2015) TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J 36:1394–1404. https://doi.org/10.1093/eurheartj/ehv044
Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, Lohmeyer J, Preissner KT (2012) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS ONE 7:e32366. https://doi.org/10.1371/journal.pone.0032366
Safi R, Kallas R, Bardawil T, Mehanna CJ, Abbas O, Hamam R, Uthman I, Kibbi AG, Nassar D (2018) Neutrophils contribute to vasculitis by increased release of neutrophil extracellular traps in Behçet’s disease. J Dermatol Sci 92:143–150. https://doi.org/10.1016/j.jdermsci.2018.08.010
Savchenko AS, Borissoff JI, Martinod K, De Meyer SF, Gallant M, Erpenbeck L, Brill A, Wang Y, Wagner DD (2014) VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood 123:141–148. https://doi.org/10.1182/blood-2013-07-514992
Stakos DA, Kambas K, Konstantinidis T, Mitroulis I, Apostolidou E, Arelaki S, Tsironidou V, Giatromanolaki A, Skendros P, Konstantinides S, Ritis K (2015) Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur Heart J 36:1405–1414. https://doi.org/10.1093/eurheartj/ehv007
Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS, Berry C, López-Sendón J, Ostadal P, Koenig W, Angoulvant D, Grégoire JC, Lavoie MA, Dubé MP, Rhainds D, Provencher M, Blondeau L, Orfanos A, L’Allier PL, Guertin MC, Roubille F (2019) Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381:2497–2505. https://doi.org/10.1056/NEJMoa1912388
Thalin C, Daleskog M, Goransson SP, Schatzberg D, Lasselin J, Laska AC, Kallner A, Helleday T, Wallen H, Demers M (2017) Validation of an enzyme-linked immunosorbent assay for the quantification of citrullinated histone H3 as a marker for neutrophil extracellular traps in human plasma. Immunol Res 65:706–712. https://doi.org/10.1007/s12026-017-8905-3
Ueki M, Kimura-Kataoka K, Takeshita H, Fujihara J, Iida R, Sano R, Nakajima T, Kominato Y, Kawai Y, Yasuda T (2014) Evaluation of all non-synonymous single nucleotide polymorphisms (SNPs) in the genes encoding human deoxyribonuclease I and I-like 3 as a functional SNP potentially implicated in autoimmunity. FEBS J 281:376–390. https://doi.org/10.1111/febs.12608
Vogel B, Shinagawa H, Hofmann U, Ertl G, Frantz S (2015) Acute DNase1 treatment improves left ventricular remodeling after myocardial infarction by disruption of free chromatin. Basic Res Cardiol 110:15. https://doi.org/10.1007/s00395-015-0472-y
Wang J, Arase H (2014) Regulation of immune responses by neutrophils. Ann N Y Acad Sci 1319:66–81. https://doi.org/10.1111/nyas.12445
Wang X, Yang D, Liu J, Fan X, Ma A, Liu P (2018) Prognostic value of culprit artery double-stranded DNA in ST-segment elevated myocardial infarction. Sci Rep 8:9294. https://doi.org/10.1038/s41598-018-27639-z
Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V (2015) Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349:316–320. https://doi.org/10.1126/science.aaa8064
Yasuda T, Ueki M, Takeshita H, Fujihara J, Kimura-Kataoka K, Iida R, Tsubota E, Soejima M, Koda Y, Kato H, Panduro A (2010) A biochemical and genetic study on all non-synonymous single nucleotide polymorphisms of the gene encoding human deoxyribonuclease I potentially relevant to autoimmunity. Int J Biochem Cell Biol 42:1216–1225. https://doi.org/10.1016/j.biocel.2010.04.012
Yasutomo K, Horiuchi T, Kagami S, Tsukamoto H, Hashimura C, Urushihara M, Kuroda Y (2001) Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet 28:313–314. https://doi.org/10.1038/91070
Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Giron CG, Gil L, Gordon L, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, To JK, Laird MR, Lavidas I, Liu Z, Loveland JE, Maurel T, McLaren W, Moore B, Mudge J, Murphy DN, Newman V, Nuhn M, Ogeh D, Ong CK, Parker A, Patricio M, Riat HS, Schuilenburg H, Sheppard D, Sparrow H, Taylor K, Thormann A, Vullo A, Walts B, Zadissa A, Frankish A, Hunt SE, Kostadima M, Langridge N, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion SJ, Aken BL, Cunningham F, Yates A, Flicek P (2018) Ensembl 2018. Nucleic Acids Res 46:D754-d761. https://doi.org/10.1093/nar/gkx1098