Density functional theory, chemical reactivity, and the Fukui functions
Tóm tắt
We review the early works which were precursors of the Conceptual Density Functional Theory. Starting from Thomas–Fermi approximation and from the exact formulation of Density Functional Theory by Hohenberg and Kohn’s theorem, we will introduce electronegativity and the theory of hard and soft acids and bases. We will also present a general introduction to the Fukui functions, and their relation with nucleophilicity and electrophilicity, with an emphasis towards the importance of these concepts for chemical reactivity.
Từ khóa
Tài liệu tham khảo
Angilella, G.G.N., La Magna, A. (eds.): Correlations in Condensed Matter Under Extreme Conditions: A Tribute to Renato Pucci on the Occasion of His 70th Birthday. Springer Verlag, New York (2017). Ebook: 9783319536644
Ayers, P.W.: An elementary derivation of the hard/soft-acid/base principle. J. Chem. Phys. 122, 141102 (2005)
Ayers, P.W.: The dependence on and continuity of the energy and other molecular properties with respect to the number of electrons. J. Math. Chem. 43, 285–303 (2008)
Ayers, P.W., De Proft, F., Borgoo, A., Geerlings, P.: Computing Fukui functions without differentiating with respect to electron number. I. Fundamentals J. Chem. Phys. 126, 224107 (2007)
Ayers, P.W., Parr, R.G., Pearson, R.G.: Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J. Chem. Phys. 124, 194107 (2006)
Berkowitz, M., Parr, R.G.: Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities. J. Chem. Phys. 88, 2554–2557 (1988)
Berwanger, J., Polesya, S., Mankovsky, S., Ebert, H., Giessibl, F.J.: Atomically resolved chemical reactivity of small Fe clusters. Phys. Rev. Lett. 124, 096001 (2020)
Chattaraj, P.K., Paddar, A., Maiti, B.: Chemical reactivity and dynamics within a density-based quantum mechanical framework. In: Sen, K.D. (ed.) A Celebration of the Contributions of Robert G Parr, volume 2 of Reviews of Modern Chemistry. World Scientific, Singapore (2002)
Coulibaly, W.K., N‘dri, J.S., Konè, M.G.-R., Dago, C.D., N‘ta Ambeu, C., Bazureau, J.-P., Ziao, N.: Studies of the chemical reactivity of a series of rhodanine derivatives by approaches to quantum chemistry. Comp. Mol. Biosci. 9, 49 (2019)
Dirac, P.A.M.: Note on exchange phenomena in the Thomas atom. Proc. Cambridge Phil. Soc. 26, 376–385 (1930)
Echegaray, E., Toro-Labbe, A., Dikmenli, K., Heidar-Zadeh, F., Rabi, N., Rabi, S., Ayers, P.W., Cárdenas, C., Parr, R.G., Anderson, J. S.M.: Negative condensed-to-atom Fukui functions: a signature of oxidation-induced reduction of functional groups. In: Angilella and La Magna (2017), chapter 19, pp. 269–288. Ebook: 9783319536644
Fermi, E.: Un metodo statistico per la determinazione di alcune proprietà dell‘atomo. Rendiconti dell‘Accademia Nazionale dei Lincei 6, 602 (1927)
Fuentealba, P., Cardenas, C., Pino-Rios, R., Tiznado, W.: Topological analysis of the Fukui function. In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds.) Applications of Topological Methods in Molecular Chemistry, volume 22 of Challenges and Advances in Computational Chemistry and Physics, chapter 8, pp. 227–241. Springer, Cham (2016)
Gázquez, J.L., Franco-Pérez, M., Ayers, P.W., Vela, A.: Temperature-dependent approach to chemical reactivity concepts in density functional theory. Int. J. Quantum Chem. 119, e25797 (2018)
Geerlings, P., De Proft, F.: Conceptual DFT: the chemical relevance of higher response functions. Phys. Chem. Chem. Phys. 10, 3028–3042 (2008)
Janak, J.F.: Proof that $$\partial E /\partial n _ i =\epsilon $$ in density-functional theory. Phys. Rev. B 18, 7165–7168 (1978)
Kaya, S., Kaya, C., Obot, I.B.: Chemical equalization principles and their new applications. In: Islam, N., Kaya, S. (eds.) Conceptual Density Functional Theory and Its Application in the Chemical Domain, chapter 5. Apple Academic Press, New York (2018)
Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)
Komorowski, L., Lipiński, J., Szarek, P., Ordon, P.: Polarization justified Fukui functions: the theory and applications for molecules. J. Chem. Phys. 135, 014109 (2011)
Lamine, W., Boughdiri, S., Christ, L., Merzoud, L., Morell, C., Chermette, H.: Relaxation of Kohn-Sham orbitals of organometallic complexes during the approach of a nucleophilic reactant (or an electron approach): the case of [sal(ph)en]$$_2$$ Zn complexes. Theor. Chem. Accounts 139, 7 (2019)
Lee, C., Yang, W., Parr, R.G.: Local softness and chemical reactivity in the molecules CO, $$\text{SCN}^-$$ and $$\text{ H}_2$$CO. J. Mol. Struct. Theochem. A Collection of Invited Papers Dedicated to Michael J.S. Dewar on the Occasion of His 70th Birthday 163, 305–313 (1988)
Lee, J., Bertels, L.W., Small, D.W., Head-Gordon, M.: Kohn-Sham density functional theory with complex, spin-restricted orbitals: accessing a new class of densities without the symmetry dilemma. Phys. Rev. Lett. 123, 113001 (2019)
Lewars, E.G.: Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. Springer, New York (2011)
March, N.H.: Self-Consistent Fields in Atoms. Pergamon Press, Oxford (1975)
March, N.H., Angilella, G.G.N.: Exactly Solvable Models in Many-Body Theory. World Scientific, Singapore (2016)
March, N.H., Pucci, R.: Chemical potential related to total energy in isoelectronic sequences of positive ions. J. Chem. Phys. 78, 2480–2484 (1983)
March, N.H., Pucci, R.: Density, total energy and chemical potential of atomic ions and some molecules. In: Avery, J., Dahl, J.P. (eds.) Local Density Approximations in Quantum Chemistry and Solid State Physics, pp. 53–74. Plenum Press, New York (1984)
Miranda-Quintana, R.A.: Computing the unconstrained local hardness. In: Islam, N., Kaya, S. (eds.) Conceptual Density Functional Theory and Its Application in the Chemical Domain, chap. 2, p. 15. Apple Academic Press, New York (2018)
Miranda-Quintana, R.A., Franco-Pérez, M., Gázquez, J.L., Ayers, P.W., Vela, A.: Chemical hardness: temperature dependent definitions and reactivity principles. J. Chem. Phys. 149, 124110 (2018)
Miranda-Quintana, R.A., Heidar-Zadeh, F., Ayers, P.W.: Elementary derivation of the ‘$$|\Delta \mu |$$ Big Is Good‘ rule. J. Phys. Chem. Lett. 9, 4344–4348 (2018)
Mulliken, R.S.: A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys. 2, 782–793 (1934)
Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E.: Electronegativity: the density functional viewpoint. J. Chem. Phys. 68, 3801–3807 (1978)
Parr, R.G., Pearson, R.G.: Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983)
Parr, R.G., Yang, W.: Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 106, 4049–4050 (1984)
Parr, R.G., Yang, W.: Density Functional Theory of Atoms and Molecules. Oxford University Press, Oxford (1989)
Pearson, R.G.: Recent advances in the concept of hard and soft acids and bases. J. Chem. Ed. 64, 561 (1987)
Perdew, J.P., Parr, R.G., Levy, M., Balduz, J.L.: Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49, 1691–1694 (1982)
Pucci, R.: Nuove metodologie comuni tra fisica e chimica teorica: la teoria del funzionale della densità. Giornale di Fisica 27, 256 (1986)
Pucci, R.: Novel common methodologies between physics and theoretical chemistry: Density functional theory. In: ngilella and La Magna (2017), chapter 21, pp. 289–301. Ebook: 9783319536644
Pucci, R., Angilella, G. G. N. Majorana: from atomic and molecular, to nuclear physics. Found. Phys. 36, 1554–1572 (2006). Preprint arXiv:physics/0605226
Pucci, R., March, N.H.: Total energy of atomic ions related to low-order ionization potentials and to diamagnetic susceptibility. J. Chem. Phys. 76, 6091–6094 (1982)
Pucci, R., March, N.H.: Equilibrium-bond-length predictions of very heavy heteronuclear molecules. Phys. Rev. A 33, 3511–3514 (1986)
Pucci, R., March, N.H.: Generalized $$1/Z$$ expansion for heteronuclear molecules. Int. J. Quantum Chem. 29, 949–958 (1986)
Sablon, N., De Proft, F., Ayers, P. W., Geerlings, P.: Computing Fukui functions without differentiating with respect to electron number. II. Calculation of condensed molecular Fukui functions. J. Chem. Phys. 126, 224108 (2007)
Sánchez-Márquez, J., García, V., Zorrilla, D., Fernández, M.: New insights in conceptual DFT: new model for the calculation of local reactivity indices based on the Sanderson‘s principle. Int. J. Quantum Chem. 119, e25844 (2018)
Sanderson, R.T.: Chemical bonds and bond energy. Academic Press, New York (1971)
Yang, W., Parr, R.G.: Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. 82, 6723–6726 (1985)
Yang, W., Parr, R.G., Pucci, R.: Electron density, Kohn-Sham frontier orbitals, and Fukui functions. J. Chem. Phys. 81, 2862–2863 (1984)
Yang, W., Parr, R.G., Pucci, R.: Electron density, Kohn-Sham frontier orbitals, and Fukui functions. J. Chem. Phys. 81, 2862–2863 (1984b). Reprinted as chap. 22, p. 303, of Ref. Angilella and La Magna (2017)