Density Functional Theory Study of Hydrogen Adsorption in a Ti‐Decorated Mg‐Based Metal–Organic Framework‐74

ChemPhysChem - Tập 17 Số 6 - Trang 879-884 - 2016
Pitphichaya Suksaengrat1, Vittaya Amornkitbamrung1,2,3, Pornjuk Srepusharawoot1,2,3, Rajeev Ahuja4,5
1Department of Physics, Faculty of Science, Khon Kaen University, 40002 Khon Kaen, Thailand
2Integrated Nanotechnology Research Center, Khon Kaen University, 40002 Khon Kaen, Thailand
3Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, 40002 Khon Kaen, Thailand
4Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
5Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden

Tóm tắt

AbstractThe Ti‐binding energy and hydrogen adsorption energy of a Ti‐decorated Mg‐based metal–organic framework‐74 (Mg‐MOF‐74) were evaluated by using first‐principles calculations. Our results revealed that only three Ti adsorption sites were found to be stable. The adsorption site near the metal oxide unit is the most stable. To investigate the hydrogen‐adsorption properties of Ti‐functionalized Mg‐MOF‐74, the hydrogen‐binding energy was determined. For the most stable Ti adsorption site, we found that the hydrogen adsorption energy ranged from 0.26 to 0.48 eV H2−1. This is within the desirable range for practical hydrogen‐storage applications. Moreover, the hydrogen capacity was determined by using ab initio molecular dynamics simulations. Our results revealed that the hydrogen uptake by Ti‐decorated Mg‐MOF‐74 at temperatures of 77, 150, and 298 K and ambient pressure were 1.81, 1.74, and 1.29 H2 wt %, respectively.

Từ khóa


Tài liệu tham khảo

10.1016/j.cattod.2006.09.022

10.1557/jmr.2012.370

10.1039/C3EE43525C

10.1063/1.2997377

10.1126/science.1083440

10.1021/jp302356q

10.1016/j.micromeso.2010.07.007

10.1021/jp809167b

10.1021/jp2106154

10.1039/c0nr00505c

10.1016/j.cattod.2011.08.019

10.1021/jp208529p

10.1021/cg500190h

10.1016/j.ces.2010.10.002

10.1016/j.jcis.2010.09.065

10.1021/ja9057234

10.1021/ja058213h

10.1021/ja807023q

10.1002/aic.11362

10.7567/JJAP.53.08NK03

10.1073/pnas.0708603104

10.1016/j.ijhydene.2013.08.102

10.1016/j.ijhydene.2010.10.035

10.1021/nl200721v

10.1021/nl902822s

10.1021/jp302852h

10.1021/jp3047517

10.1021/jp501722z

10.1063/1.4812830

10.1021/ja058330c

10.1103/PhysRevLett.97.226102

10.1103/PhysRevLett.94.175501

10.1021/jz300643y

10.1007/s11467-011-0178-z

10.1016/j.commatsci.2005.04.010

10.1088/0953-8984/22/44/445301

10.1021/ct1007444

10.1063/1.3583813

10.1021/ja072599

10.1016/0927-0256(96)00008-0

10.1103/PhysRevB.50.17953

10.1103/PhysRevLett.77.3865

10.1103/PhysRevB.13.5188

>CCDC 1448747contains the supplementary crystallographic data for this paper. These data are provided free of charge byThe Cambridge Crystallographic Data Centre.