Dense and long carbon nanotube arrays decorated with Mn3O4 nanoparticles for electrodes of electrochemical supercapacitors

Carbon - Tập 49 Số 4 - Trang 1225-1234 - 2011
Xinwei Cui1, Fengping Hu1, Weifeng Wei1, Weixing Chen1
1Dept. of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G6

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hennrich, 2006, The element of carbon, 1

Zhu, 2006, Well-aligned open-ended carbon nanotube architectures: an approach for device assembly, Nano Lett, 6, 243, 10.1021/nl052183z

Fan, 1999, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 283, 512, 10.1126/science.283.5401.512

Yun, 2006, High sensitivity carbon nanotube tower electrodes, Sens Actuators B, 120, 298, 10.1016/j.snb.2006.02.030

Lin, 2004, Glucose biosensors based on carbon nanotube nanoelectrode ensembles, Nano Lett, 4, 191, 10.1021/nl0347233

Kaempgen, 2009, Printable thin film supercapacitors using single-walled carbon nanotubes, Nano Lett, 9, 1872, 10.1021/nl8038579

Hata, 2004, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science, 306, 1362, 10.1126/science.1104962

Futaba, 2006, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nat Mater, 5, 987, 10.1038/nmat1782

Chen, 2004, Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors, Electrochim Acta, 49, 4157, 10.1016/j.electacta.2004.04.010

Futaba, 2009, Dual porosity single-walled carbon nanotube material, Nano Lett, 9, 3302, 10.1021/nl901581t

Lau, 2003, Superhydrophobic carbon nanotube forests, Nano Lett, 3, 1701, 10.1021/nl034704t

Talapatra, 2006, Direct growth of aligned carbon nanotubes on bulk metals, Nat Nanotechnol, 1, 112, 10.1038/nnano.2006.56

Shah R, Zhang X, Talapatra S. Electrochemical double layer capacitor electrodes using aligned carbon nanotubes grown directly on metals. Nanotechnology 2009;20(39):395202-1–5.

Honda, 2007, Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance, Electrochem Solid-State Lett, 10, A106, 10.1149/1.2437665

Zhang, 2007, Using a cut-paste method to prepare a carbon nanotube fur electrode, Nanotechnology, 18

Zhang, 2008, Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes, J Electrochem Soc, 155, K19, 10.1149/1.2811864

Simon, 2008, Materials for electrochemical capacitors, Nat Mater, 7, 845, 10.1038/nmat2297

Long, 2004, Three-dimensional battery architectures, Chem Rev, 104, 4463, 10.1021/cr020740l

Wang, 2009, A novel activated mesocarbon microbead(aMCMB)/Mn3O4 composite for electrochemical capacitors in organic electrolyte, J Power Sources, 194, 1218, 10.1016/j.jpowsour.2009.06.015

Lei, 2008, Mesoporous carbon–manganese oxide composite as negative electrode material for supercapacitors, Micropor Mesopor Mater, 110, 167, 10.1016/j.micromeso.2007.10.048

Ko, 2009, Electrochemical properties of MnO2/activated carbon nanotube composite as an electrode material for supercapacitor, Mater Chem Phys, 114, 837, 10.1016/j.matchemphys.2008.10.047

Dubal, 2009, A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application, J Alloys Compd, 484, 218, 10.1016/j.jallcom.2009.03.135

Cui, 2009, Effect of catalyst particle interspacing on the growth of millimetre-scale carbon nanotube arrays by catalytic chemical vapor deposition, Carbon, 47, 3441, 10.1016/j.carbon.2009.08.011

Zhang, 2008, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage, Nano Lett, 8, 2664, 10.1021/nl800925j

Toupin, 2002, Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide, Chem Mater, 14, 3946, 10.1021/cm020408q

Wei, 2009, Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors, J Power Sources, 186, 543, 10.1016/j.jpowsour.2008.10.058

Zanello, 2006, Bone cell proliferation on carbon nanotubes, Nano Lett, 6, 562, 10.1021/nl051861e

Kim, 2005, Drastic change of electric double layer capacitance by surface functionalization of carbon nanotubes, Appl Phys Lett, 87, 234106-1, 10.1063/1.2139839

Ci, 2007, Vertically aligned large-diameter double-walled carbon nanotube arrays having ultralow density, J Phys Chem C, 111, 9077, 10.1021/jp072123c

Liu, 2008, Ru oxide supercapacitors with high loadings and high power and energy densities, J Power Sources, 176, 410, 10.1016/j.jpowsour.2007.10.076

Fischer, 2007, Incorporation of homogeneous nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors, Nano Lett, 7, 281, 10.1021/nl062263i

Dai, 2007, From spinel Mn3O4 to layered nanoarchitectures using electrochemical cycling and the distinctive pseudocapacitive behavior, Appl Phys Lett, 90, 104102, 10.1063/1.2711286

Sharma, 2008, Growth and characterization of carbon-supported MnO2 nanorods for supercapacitor electrode, Physica B, 403, 1763, 10.1016/j.physb.2007.10.007

Wei, 2007, Defective rock-salt structure in the anodically electrodeposited Mn–Co–O nanocrystals, J Phys Chem C, 111, 10398, 10.1021/jp072722j

Wei, 2008, Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition – implications for high-rate capability electrochemical supercapacitors, J Phys Chem C, 112, 15075, 10.1021/jp804044s

Wei, 2009, Improved electrochemical impedance response induced by morphological and structural evolution in nanocrystalline MnO2 electrodes, Electrochim Acta, 54, 2271, 10.1016/j.electacta.2008.10.031

Lei, 2010, MnO2-coated Ni nanorods: enhanced high rate behavior in pseudo-capacitive supercapacitor, Electrochim Acta, 55, 7454, 10.1016/j.electacta.2010.03.012

Lin, 2007, Manganese oxide films prepared by sol–gel process for supercapacitor application, Surf Coat Technol, 202, 1272, 10.1016/j.surfcoat.2007.07.049