Dense Mesh RCNN: assessment of human skin burn and burn depth severity

C. Pabitha1, B. Vanathi1
1Department of Computer Science and Engineering, SRM Valliammai Engineering College, Kattankulathur, Tamil Nadu, 603203, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhai LN, Li J (2015) Prediction methods of skin burn for performance evaluation of thermal protective clothing. Burns 41(7):1385–1396

Haller HL, Giretzlehner M, Dirnberger J, Owen R (2012) Medical documentation of burn injuries. Handbook of burns. Springer, Vienna, pp 117–129

Torpy JM, Lynm C, Glass RM (2009) Burn injuries. JAMA 302(16):1828–1828

Rowland RA, Ponticorvo A, Baldado ML, Kennedy GT, Burmeister DM, Christy RJ, Durkin AJ (2019) Burn wound classification model using spatial frequency-domain imaging and machine learning. J Biomed Opt 24(5):056007

Serrano C, Boloix-Tortosa R, Gómez-Cía T, Acha B (2015) Features identification for automatic burn classification. Burns 41(8):1883–1890

Zafar K, Gilani SO, Waris A, Ahmed A, Jamil M, Khan MN, SohailKashif A (2020) Skin lesion segmentation from dermoscopic images using convolutional neural network. Sensors 20(6):1601

Tran H, Le T, Le T, Nguyen T (2015) Burn image classification using one-class support vector machine. In: ICCASA, pp 233–242

Yadav DP (2021) A method for human burn diagnosis using machine learning and SLIC superpixels based segmentation. In: IOP Conference Series: Materials Science and Engineering, vol 1116. IOP Publishing, pp 012186

Bhansali RM, Kumar R (2021) BurnNet: an efficient deep learning framework for accurate dermal burn classification. medRxiv

Jaskille AD, Shupp JW, Jordan MH, Jeng JC (2009) Critical review of burn depth assessment techniques: part I. Historical review. J Burn Care Res 30(6):937–947

Pinero BA, Serrano C, Acha JI, Roa LM (2005) Segmentation and classification of burn images by color and texture information. J Biomed Opt 10(3):034014

Abdolahnejad M, Lee J, Chan H, Morzycki A, Ethier O, Mo A, Liu PX, Wong JN, Hong C, Joshi R (2023) Boundary attention mapping (BAM): fine-grained saliency maps for segmentation of burn injuries. arXiv preprint arXiv:2305.15365

Boissin C, Laflamme L, Fransén J, Lundin M, Huss F, Wallis L, Allorto N, Lundin J (2023) Development and evaluation of deep learning algorithms for assessment of acute burns and the need for surgery. Sci Rep 13(1):1794

Tran HS, Le TH, Nguyen TT (2016) The degree of skin burns images recognition using convolutional neural network. Indian J Sci Technol 9(45):1–6

Hai TS, Triet LM, Thai LH, Thuy NT (2017) Real-time burning image classification using support vector machine. EAI Endorsed Trans Context Aware Syst Appl 4(12):e4. https://doi.org/10.4108/eai.6-7-2017.152760

Despo O, Yeung S, Jopling J, Pridgen B, Sheckter C, Silberstein S, Milstein A (2017) BURNED: towards efficient and accurate burn prognosis using deep learning

Rangel-Olvera B, Rosas-Romero R (2021) Detection and classification of burnt skin on images with sparse representation of image patches and dictionaries. Technol Sci Cult A Glob Vis IV:121

Acha B, Serrano C, Fondón I, Gómez-Cía T (2013) Burn depth analysis using multidimensional scaling applied to psychophysical experiment data. IEEE Trans Med Imaging 32(6):1111–1120

Ethier O, Chan HO, Abdolahnejad M, Morzycki A, Tchango AF, Joshi R, Wong JN, Hong C (2022) Using computer vision and artificial intelligence to track the healing of severe burns. medRxiv. 2022–12

Gkioxari G, Malik J, Johnson J (2019) Mesh r-cnn. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 9785–9795

Karthik J, Nath GS, Veena A (2021) Deep learning-based approach for skin burn detection with multi-level classification. In: Advances in Computing and Network Communications: Proceedings of CoCoNet 2020, vol 2. Springer, Singapore, pp 31–40

Sinha A, Kawahara J, Pakzad A, Abhishek K, Ruthven M, Ghorbel E, Kacem A, Aouada D, Hamarneh G (2023) DermSynth3D: synthesis of in-the-wild annotated dermatology images. arXiv preprint arXiv:2305.12621

Gao T, Liu S, Gao E, Wang A, Tang X, Fan Y (2022) Automatic segmentation of laser-induced injury OCT images based on a deep neural network model. Int J Mol Sci 23(19):11079

Schenkenfelder B, Kaltenleithner S, Sabrowsky-Hirsch B, Klug C, Lumenta DB, Scharinger J (2022) Synthesizing diagnostic burn images for deep learning applications. In: 2022 Annual Modeling and Simulation Conference (ANNSIM), IEEE, pp 270–281

Cirillo MD, Mirdell R, Sjöberg F, Pham TD (2021) Improving burn depth assessment for pediatric scalds by AI based on semantic segmentation of polarized light photography images. Burns 47(7):1586–1593

Suha SA, Sanam TF (2022) A deep convolutional neural network-based approach for detecting burn severity from skin burn images. IEEE Access 10:171885–171896

Lee S, Rahul R, Lukan J, Boyko T, Zelenova K, Makled B, Parsey C, Norfleet J, De S (2022) A deep learning model for burn depth classification using ultrasound imaging. arXiv preprint arXiv:2203.15879

Chang CW, Ho CY, Lai F, Christian M, Huang SC, Chang DH, Chen YS (2023) Application of multiple deep learning models for automatic burn wound assessment. Burns 49(5):1039–1051

Liang J, Li R, Wang C, Zhang R, Yue K, Li W, Li Y (2022) A spiking neural network based on retinal ganglion cells for automatic burn image segmentation. Entropy 24(11):1526

Rambhatla S, Huang S, Trinh L, Zhang M, Long B, Dong M, Unadkat V, Yenikomshian HA, Gillenwater J, Liu Y (2022) DL4Burn: burn surgical candidacy prediction using multimodal deep learning. PLoS Med 19(2):e1003964

Zhang R, Tian D, Xu D, Qian W, Yao Y (2022) A survey of wound image analysis using deep learning: classification, detection, and segmentation. IEEE Access 10:9843957

Lee S, Rahul R, Ye H, Chittajallu D, Kruger U, Boyko T, Lukan JK, Enquobahrie A, Norfleet J, De S (2022) Real-time burn classification using ultrasound imaging. Sci Rep 12(1):9623

Li Z, Huang J, Tong X, Zhang C, Lu J, Zhang W, Song A, Ji S (2023) GL-FusionNet: fusing global and local features to classify deep and superficial partial thickness burn. Math Biosci Eng 20(6):10153–10173

Lu J, Deegan AJ, Cheng Y, Liu T, Zheng Y, Mandell SP, Wang RK (2021) Application of OCT-derived attenuation coefficient in acute burn-damaged skin. Lasers Surg Med 53(9):1192–1200

Chang CW, Lai F, Christian M, Chen YC, Hsu C, Chen YS, Chang DH, Roan TL, Yu YC (2021) Deep learning–assisted burn wound diagnosis: diagnostic model development study. JMIR Med Inform 9(12):e22798

Yadav DP, Aljrees T, Kumar D, Kumar A, Singh KU, Singh T (2023) Spatial attention-based residual network for human burn identification and classification. Sci Rep 13(1):12516

Yadav DP, Sharma A, Singh M, Goyal A (2019) Feature extraction-based machine learning for human burn diagnosis from burn images. IEEE J Transl. Eng Health Med 7:1–7

Chauhan J, Goyal P (2021) Convolution neural network for effective burn region segmentation of color images. Burns 47(4):854–862

Chauhan J, Goyal P (2020) BPBSAM: body part-specific burn severity assessment model. Burns 46(6):1407–1423

Wang Y, Ke Z, He Z, Chen X, Zhang Y, Xie P, Kai L (2020) Real-time burn depth assessment using artificial networks: a large-scale multicentre study. Burns 46(8):1829–1838

Abubakar A, Ugail H, Smith KM, Bukar AM, Elmahmudi A (2020) Burns depth assessment using deep learning features. J Med Biol Eng 40(6):923–933

Rostami B, Niezgoda J, Gopalakrishnan S, Yu Z (2021) Multiclass Burn wound image classification using deep convolutional neural networks. arXiv preprint arXiv:2103.01361

Pabitha C, Vanathi B (2021) Dense-mask RCNN: a hybrid model for skin burn image classification and severity grading. Neural Process Lett 53(1):319–337

Liu H, Yue K, Cheng S, Li W, Fu Z (2021) A framework for automatic burn image segmentation and burn depth diagnosis using deep learning. Comput Math Methods Med. https://doi.org/10.1155/2021/5514224

Dai F, Zhang D, Su K, Xin N (2021) Burn images segmentation based on Burn-GAN. J Burn Care Res 42(4):755–762

Jiao C, Su K, Xie W, Ye Z (2019) Burn image segmentation based on mask regions with convolutional neural network deep learning framework: more accurate and more convenient. Burns Trauma. https://doi.org/10.1186/s41038-018-0137-9

Abubakar A, Ajuji M, UsmanYahya I (2020) Comparison of deep transfer learning techniques in human skin burns discrimination. Appl Syst Innov 3(2):20