Dense Mesh RCNN: assessment of human skin burn and burn depth severity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhai LN, Li J (2015) Prediction methods of skin burn for performance evaluation of thermal protective clothing. Burns 41(7):1385–1396
Haller HL, Giretzlehner M, Dirnberger J, Owen R (2012) Medical documentation of burn injuries. Handbook of burns. Springer, Vienna, pp 117–129
Rowland RA, Ponticorvo A, Baldado ML, Kennedy GT, Burmeister DM, Christy RJ, Durkin AJ (2019) Burn wound classification model using spatial frequency-domain imaging and machine learning. J Biomed Opt 24(5):056007
Serrano C, Boloix-Tortosa R, Gómez-Cía T, Acha B (2015) Features identification for automatic burn classification. Burns 41(8):1883–1890
Zafar K, Gilani SO, Waris A, Ahmed A, Jamil M, Khan MN, SohailKashif A (2020) Skin lesion segmentation from dermoscopic images using convolutional neural network. Sensors 20(6):1601
Tran H, Le T, Le T, Nguyen T (2015) Burn image classification using one-class support vector machine. In: ICCASA, pp 233–242
Yadav DP (2021) A method for human burn diagnosis using machine learning and SLIC superpixels based segmentation. In: IOP Conference Series: Materials Science and Engineering, vol 1116. IOP Publishing, pp 012186
Bhansali RM, Kumar R (2021) BurnNet: an efficient deep learning framework for accurate dermal burn classification. medRxiv
Jaskille AD, Shupp JW, Jordan MH, Jeng JC (2009) Critical review of burn depth assessment techniques: part I. Historical review. J Burn Care Res 30(6):937–947
Pinero BA, Serrano C, Acha JI, Roa LM (2005) Segmentation and classification of burn images by color and texture information. J Biomed Opt 10(3):034014
Abdolahnejad M, Lee J, Chan H, Morzycki A, Ethier O, Mo A, Liu PX, Wong JN, Hong C, Joshi R (2023) Boundary attention mapping (BAM): fine-grained saliency maps for segmentation of burn injuries. arXiv preprint arXiv:2305.15365
Boissin C, Laflamme L, Fransén J, Lundin M, Huss F, Wallis L, Allorto N, Lundin J (2023) Development and evaluation of deep learning algorithms for assessment of acute burns and the need for surgery. Sci Rep 13(1):1794
Tran HS, Le TH, Nguyen TT (2016) The degree of skin burns images recognition using convolutional neural network. Indian J Sci Technol 9(45):1–6
Hai TS, Triet LM, Thai LH, Thuy NT (2017) Real-time burning image classification using support vector machine. EAI Endorsed Trans Context Aware Syst Appl 4(12):e4. https://doi.org/10.4108/eai.6-7-2017.152760
Despo O, Yeung S, Jopling J, Pridgen B, Sheckter C, Silberstein S, Milstein A (2017) BURNED: towards efficient and accurate burn prognosis using deep learning
Rangel-Olvera B, Rosas-Romero R (2021) Detection and classification of burnt skin on images with sparse representation of image patches and dictionaries. Technol Sci Cult A Glob Vis IV:121
Acha B, Serrano C, Fondón I, Gómez-Cía T (2013) Burn depth analysis using multidimensional scaling applied to psychophysical experiment data. IEEE Trans Med Imaging 32(6):1111–1120
Ethier O, Chan HO, Abdolahnejad M, Morzycki A, Tchango AF, Joshi R, Wong JN, Hong C (2022) Using computer vision and artificial intelligence to track the healing of severe burns. medRxiv. 2022–12
Gkioxari G, Malik J, Johnson J (2019) Mesh r-cnn. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 9785–9795
Karthik J, Nath GS, Veena A (2021) Deep learning-based approach for skin burn detection with multi-level classification. In: Advances in Computing and Network Communications: Proceedings of CoCoNet 2020, vol 2. Springer, Singapore, pp 31–40
Sinha A, Kawahara J, Pakzad A, Abhishek K, Ruthven M, Ghorbel E, Kacem A, Aouada D, Hamarneh G (2023) DermSynth3D: synthesis of in-the-wild annotated dermatology images. arXiv preprint arXiv:2305.12621
Gao T, Liu S, Gao E, Wang A, Tang X, Fan Y (2022) Automatic segmentation of laser-induced injury OCT images based on a deep neural network model. Int J Mol Sci 23(19):11079
Schenkenfelder B, Kaltenleithner S, Sabrowsky-Hirsch B, Klug C, Lumenta DB, Scharinger J (2022) Synthesizing diagnostic burn images for deep learning applications. In: 2022 Annual Modeling and Simulation Conference (ANNSIM), IEEE, pp 270–281
Cirillo MD, Mirdell R, Sjöberg F, Pham TD (2021) Improving burn depth assessment for pediatric scalds by AI based on semantic segmentation of polarized light photography images. Burns 47(7):1586–1593
Suha SA, Sanam TF (2022) A deep convolutional neural network-based approach for detecting burn severity from skin burn images. IEEE Access 10:171885–171896
Lee S, Rahul R, Lukan J, Boyko T, Zelenova K, Makled B, Parsey C, Norfleet J, De S (2022) A deep learning model for burn depth classification using ultrasound imaging. arXiv preprint arXiv:2203.15879
Chang CW, Ho CY, Lai F, Christian M, Huang SC, Chang DH, Chen YS (2023) Application of multiple deep learning models for automatic burn wound assessment. Burns 49(5):1039–1051
Liang J, Li R, Wang C, Zhang R, Yue K, Li W, Li Y (2022) A spiking neural network based on retinal ganglion cells for automatic burn image segmentation. Entropy 24(11):1526
Rambhatla S, Huang S, Trinh L, Zhang M, Long B, Dong M, Unadkat V, Yenikomshian HA, Gillenwater J, Liu Y (2022) DL4Burn: burn surgical candidacy prediction using multimodal deep learning. PLoS Med 19(2):e1003964
Zhang R, Tian D, Xu D, Qian W, Yao Y (2022) A survey of wound image analysis using deep learning: classification, detection, and segmentation. IEEE Access 10:9843957
Lee S, Rahul R, Ye H, Chittajallu D, Kruger U, Boyko T, Lukan JK, Enquobahrie A, Norfleet J, De S (2022) Real-time burn classification using ultrasound imaging. Sci Rep 12(1):9623
Li Z, Huang J, Tong X, Zhang C, Lu J, Zhang W, Song A, Ji S (2023) GL-FusionNet: fusing global and local features to classify deep and superficial partial thickness burn. Math Biosci Eng 20(6):10153–10173
Lu J, Deegan AJ, Cheng Y, Liu T, Zheng Y, Mandell SP, Wang RK (2021) Application of OCT-derived attenuation coefficient in acute burn-damaged skin. Lasers Surg Med 53(9):1192–1200
Chang CW, Lai F, Christian M, Chen YC, Hsu C, Chen YS, Chang DH, Roan TL, Yu YC (2021) Deep learning–assisted burn wound diagnosis: diagnostic model development study. JMIR Med Inform 9(12):e22798
Yadav DP, Aljrees T, Kumar D, Kumar A, Singh KU, Singh T (2023) Spatial attention-based residual network for human burn identification and classification. Sci Rep 13(1):12516
Yadav DP, Sharma A, Singh M, Goyal A (2019) Feature extraction-based machine learning for human burn diagnosis from burn images. IEEE J Transl. Eng Health Med 7:1–7
Chauhan J, Goyal P (2021) Convolution neural network for effective burn region segmentation of color images. Burns 47(4):854–862
Chauhan J, Goyal P (2020) BPBSAM: body part-specific burn severity assessment model. Burns 46(6):1407–1423
Wang Y, Ke Z, He Z, Chen X, Zhang Y, Xie P, Kai L (2020) Real-time burn depth assessment using artificial networks: a large-scale multicentre study. Burns 46(8):1829–1838
Abubakar A, Ugail H, Smith KM, Bukar AM, Elmahmudi A (2020) Burns depth assessment using deep learning features. J Med Biol Eng 40(6):923–933
Rostami B, Niezgoda J, Gopalakrishnan S, Yu Z (2021) Multiclass Burn wound image classification using deep convolutional neural networks. arXiv preprint arXiv:2103.01361
Pabitha C, Vanathi B (2021) Dense-mask RCNN: a hybrid model for skin burn image classification and severity grading. Neural Process Lett 53(1):319–337
Liu H, Yue K, Cheng S, Li W, Fu Z (2021) A framework for automatic burn image segmentation and burn depth diagnosis using deep learning. Comput Math Methods Med. https://doi.org/10.1155/2021/5514224
Dai F, Zhang D, Su K, Xin N (2021) Burn images segmentation based on Burn-GAN. J Burn Care Res 42(4):755–762
Jiao C, Su K, Xie W, Ye Z (2019) Burn image segmentation based on mask regions with convolutional neural network deep learning framework: more accurate and more convenient. Burns Trauma. https://doi.org/10.1186/s41038-018-0137-9