Denominator identities for finite-dimensional Lie superalgebras and Howe duality for compact dual pairs
Tóm tắt
Từ khóa
Tài liệu tham khảo
J. Adams, The theta correspondence over $${\mathbb {R}}$$ , In: Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory, Lecture Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 12, World Sci. Publ., Hackensack, NJ, 2007, pp. 1–37.
Enright T.J.: Analogues of Kostant’s $${\mathfrak {u}}$$ -cohomology formulas for unitary highest weight modules. J. Reine Angew. Math. 392, 27–36 (1988)
Enright T.J., Willenbring J.F.: Hilbert series, Howe duality and branching for classical groups. Ann. of Math. (2) 159, 337–375 (2004)
M. Gorelik, Weyl denominator identity for finite-dimensional Lie superalgebras, arXiv:0905.1181.
R. Howe, θ-series and invariant theory, In: Automorphic Forms, Representations and L-Functions. Part 1, Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, pp. 275–285.
V.G. Kac, Representations of classical Lie superalgebras, In: Differential Geometrical Methods in Mathematical Physics. II, Proc. Conf., Univ. Bonn, Bonn, 1977, Lecture Notes in Math., 676, Springer-Verlag, 1978, pp. 597–626.
Kac V.G., Möseneder Frajria P., Papi P.: On the kernel of the affine Dirac operator. Mosc. Math. J. 8, 759–788 (2008)
V.G. Kac, P. Möseneder Frajria and P. Papi, Denominator identities for Lie superalgebras (extended abstract), Proceedings of the FPSAC 2010, 839–850.
V.G. Kac and M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, In: Lie Theory and Geometry, Progr. Math., 123, Birkhäuser Boston, Boston, MA, 1994, pp. 415–456.
Kashiwara M., Vergne M.: On the Segal–Shale–Weil representations and harmonic polynomials. Invent. Math. 44, 1–47 (1978)
Kostant B.: Lie algebra cohomology and the generalized Borel–Weil theorem. Ann. of Math. (2) 74, 329–387 (1961)
Li J.-S., Paul A., Tan E.-C., Zhu C.-B.: The explicit duality correspondence of (Sp(p, q), O*(2n)). J. Funct. Anal. 200, 71–100 (2003)
Parker M.: Classification of real simple Lie superalgebras of classical type. J. Math. Phys. 21, 689–697 (1980)
Penkov I., Serganova V.V.: Representations of classical Lie superalgebras of type I. Indag. Math. (N.S.) 3, 419–466 (1992)
Serganova V.V.: Classification of simple real Lie superagebras and symmetric superspaces. Funktsional. Anal. i Prilozhen. 17(3), 46–54 (1983)