Denominator identities for finite-dimensional Lie superalgebras and Howe duality for compact dual pairs

Japanese Journal of Mathematics - Tập 7 Số 1 - Trang 41-134 - 2012
María Gorelik1, Victor G. Kač2, Pierluigi Möseneder Frajria3, Paolo Papi4
1Department of Mathematics, Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot, 76100, Israel
2Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
3Politecnico di Milano, Polo regionale di Como, Via Valleggio 11, 22100, Como, Italy
4Dipartimento di Matematica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. Adams, The theta correspondence over $${\mathbb {R}}$$ , In: Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory, Lecture Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 12, World Sci. Publ., Hackensack, NJ, 2007, pp. 1–37.

Enright T.J.: Analogues of Kostant’s $${\mathfrak {u}}$$ -cohomology formulas for unitary highest weight modules. J. Reine Angew. Math. 392, 27–36 (1988)

Enright T.J., Willenbring J.F.: Hilbert series, Howe duality and branching for classical groups. Ann. of Math. (2) 159, 337–375 (2004)

M. Gorelik, Weyl denominator identity for finite-dimensional Lie superalgebras, arXiv:0905.1181.

R. Howe, θ-series and invariant theory, In: Automorphic Forms, Representations and L-Functions. Part 1, Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, pp. 275–285.

Howe R.: Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313, 539–570 (1989)

Howe R.: Trascending classical invariant theory. J. Amer. Math. Soc. 2, 535–552 (1989)

Iohara K., Koga Y.: Central extension of Lie superalgebras. Comment. Math. Helv. 76, 110–154 (2001)

Kac V.G.: Lie superalgebras. Advances in Math. 26, 8–96 (1977)

V.G. Kac, Representations of classical Lie superalgebras, In: Differential Geometrical Methods in Mathematical Physics. II, Proc. Conf., Univ. Bonn, Bonn, 1977, Lecture Notes in Math., 676, Springer-Verlag, 1978, pp. 597–626.

Kac V.G.: Infinite-Dimensional Lie Algebras. Third ed.. Cambridge Univ. Press, Cambridge (1990)

Kac V.G., Möseneder Frajria P., Papi P.: On the kernel of the affine Dirac operator. Mosc. Math. J. 8, 759–788 (2008)

V.G. Kac, P. Möseneder Frajria and P. Papi, Denominator identities for Lie superalgebras (extended abstract), Proceedings of the FPSAC 2010, 839–850.

V.G. Kac and M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, In: Lie Theory and Geometry, Progr. Math., 123, Birkhäuser Boston, Boston, MA, 1994, pp. 415–456.

Kashiwara M., Vergne M.: On the Segal–Shale–Weil representations and harmonic polynomials. Invent. Math. 44, 1–47 (1978)

Kostant B.: Lie algebra cohomology and the generalized Borel–Weil theorem. Ann. of Math. (2) 74, 329–387 (1961)

Li J.-S., Paul A., Tan E.-C., Zhu C.-B.: The explicit duality correspondence of (Sp(p, q), O*(2n)). J. Funct. Anal. 200, 71–100 (2003)

Parker M.: Classification of real simple Lie superalgebras of classical type. J. Math. Phys. 21, 689–697 (1980)

Penkov I., Serganova V.V.: Representations of classical Lie superalgebras of type I. Indag. Math. (N.S.) 3, 419–466 (1992)

Serganova V.V.: Automorphisms of simple Lie superalgebras. Math. USSR-Izv. 24, 539–551 (1985)

Serganova V.V.: Classification of simple real Lie superagebras and symmetric superspaces. Funktsional. Anal. i Prilozhen. 17(3), 46–54 (1983)

van de Leur J.W.: A classification of contragredient Lie superalgebras of finite growth. Comm. Algebra 17, 1815–1841 (1989)