Khử nitrat và sự kiểm soát của nó

Stuart J. Ferguson1
1Department of Biochemistry, University of Oxford, Oxford, UK

Tóm tắt

Quá trình khử nitrat ở vi khuẩn bao gồm một loạt bốn phản ứng khử; đối với nitrat, nitrit, oxit nitric và oxit nitrous. Khí nitơ là sản phẩm cuối cùng. Tính chất của các enzyme xúc tác cho các phản ứng này được mô tả cùng với các đặc điểm của các hệ thống vận chuyển điện tử cơ bản. Các yếu tố ảnh hưởng đến sự thể hiện của các reductase cho bốn phản ứng được xem xét cùng với tác động của oxy đối với hoạt động của các enzyme trong quá trình khử nitrat. Điểm nhấn chính là những quan sát được thực hiện với Paracoccus denitrificans và Pseudomonas stutzeri.

Từ khóa

#khử nitrat #vi khuẩn #enzyme #phản ứng khử #oxit nitrous #Paracoccus denitrificans #Pseudomonas stutzeri

Tài liệu tham khảo

Abraham ZHL, Lowe DJ & Smith BE (1993) Purification and characterization of the dissimilatory nitrite reductase fromAlcaligenes xylosoxidans subsp.xylosoxidans (N.C.I.M.B. 11015): evidence for the presence of both type 1 and type 2 copper centres. Biochem. J. 295: 587–593

Alefounder PR & Ferguson SJ (1980) The location of dissimilatory nitrite reductase and the control of dissimilatory nitrate reductase inParacoccus denitrificans. Biochem. J. 192: 231–240

Alefounder PR, McCarthy JEG & Ferguson SJ (1981) The basis of the control of nitrate reduction by oxygen inParacoccus denitrificans. FEMS Microbiol Lett. 12: 321–326

Alefounder PR, Greenfield AJ, McCarthy JEG & Ferguson SJ (1983) Selection and organisation of denitrifying electron transfer pathways inParacoccus denitrificans. Biochim Biophys Acta 724: 20–39

Arai H, Igarashi Y & Kodama T (1991) Nitrite activates the transcription of thePseudomonas aeruginosa nitrite reductase and cytochrome c-551 operon under anaerobic conditions. FEBS Lett. 261: 196–198

Auton KA & Anthony C (1989) The role of cytochromes and blue copper proteins in growth of an obligate methylotroph on methanol and methylamine. J. Gen. Microbiol. 135: 1923–1931

Ballard AL & Ferguson SJ (1988) Respiratory nitrate reductase fromParacoccus denitrificans. Evidence for twob-type haems in the γ subunit and properties of a water-soluble active enzyme containing α and β subunits. Eur.J.Biochem. 174: 207–212

Bell LC & Ferguson SJ (1991) Nitric and nitrous oxide reductases are active under aerobic conditions in cells ofThiosphaera pantotropha. Biochem. J. 273: 423–427

Bell LC, Page MD, Berks BC, Richardson DJ & Ferguson SJ (1993) Insertion of transposon Tn5 into the structural gene of the membrane-bound nitrate reductase ofThiosphaera pantotropha results in anaerobic overexpression of periplasmic nitrate reductase activity. J. Gen. Microbiol. 139: 3205–3214

Bell LC, Richardson DJ & Ferguson SJ (1990) Periplasmic and membrane-bound respiratory nitrate reductases inThiosphaera pantotropha: the periplasmic enzyme catalyzes the first step in aerobic denitrification. FEBS Letts. 265: 85–87

—— (1992) Identification of nitric oxide reductase activity inRhodobacter capsulatus: the electron transport pathway can either use or by pass both cytochrome c2 and the cytochrome bc1 complex. J. Gen. Microbiol. 138: 437–443

Bennett B & Bray RC (1994) Redox-related activation and deactivation ofE. coli nitrate reductase: a proposed role for the low-potential iron-sulphur centres. Biochem. Soc. Trans. 22: 283S

Berks BC, Baratta D, Richardson DJ & Ferguson SJ (1993) Purification and characterization of a nitrous oxide reductase fromThiosphaerapantotropha. Implications for the mechanism of aerobic nitrous oxide reduction. Eur. J. Biochem. 212: 467–476

Berks BC, Richardson DJ, Robinson C, Reilly A, Aplin RT & Ferguson SJ (1994) Purification and characterization of the periplasmic nitrate reductase fromThiosphaera pantotropha. Eur. J. Biochem. 220: 117–124

Berks BC, Ferguson SJ, Moir JWB & Richardson DJ (1995) Enzymes and underlying electron transport systems that reduce nitrogen oxides and oxyanions in bacteria. Biochim. Biophys. Acta, provisionally accepted for publication

Blasco F, Iobbi C, Giordano G, Chippaux M & Bonnefoy V (1989) Nitrate reductase ofEscherichia coli: completion of the nucleotide sequence of thenar operon and reassessment of the role of the α and β subunits in iron binding and electron transfer. Mol. Gen. Genet. 218: 249–256

Blasco F, Iobbi C, Ratouchniak J, Bonnefoy V & Chippaux M (1990) Nitrate reductases ofEscherichia coli: sequence of the second nitrate reductase and comparison with that encoded by thenarGHJI operon. Mol. Gen. Genet. 222: 104–111

Blasco F, Nunzi F, Pommier J, Brasseur R, Chippaux M & Giordano G (1992a) Formation of active heterologous nitrate reductases between nitrate reductases A and Z ofEscherichia coli. Mol.Microbiol. 6: 209–219

Blasco F, Pommier J, Augier V, Chippaux M & Giordano G (1992b) Involvement of thenarJ ornarW gene product in formation of active nitrate reductase inEscherichia coli. Mol. Microbiol. 6: 221–230

Blaszczyk M (1993) Effect of medium composition on the denitrification of nitrate byParacoccus denitrificans. Appl. Environ. Microbiol. 59: 3951–3953

Bonin P & Gilewicz M (1991) A direct demonstration of ‘co-respiration’ of oxygen and nitrogen oxides byPseudomonas nautica: some spectral and kinetic properties of the respiratory components. FEMS Microbiol. Letts. 80: 183–188

Bonnefoy V & De Moss J (1994) Antonie van Leeuwenhoek 66 (in this issue)

Boogerd FC, van Verseveld HW & Stouthamer AH (1983) Dissimilatory nitrate uptake inParacoccus denitrificans via a Δû H +-dependent system and a nitrate-nitrite antiport system. Biochim. Biophys. Acta. 723: 415–427

Boublikova P, Kučera I, & Dadak V (1985) The effect of oxygen and nitrate on the biosynthesis of denitrification enzymes inParacoccus denitrificans Biologia (Bratislava) 40: 357–363

Braun C & Zumft WG (1991) Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway ofPseudomonas stutzeri. J. Biol. Chem. 266: 22785–22788

Breton J, Berks BC, Reilly A, Thomson AJ, Ferguson SJ & Richardson DJ (1994). Characterisation of the paramagnetic iron-containing redox centres ofThiosphaera pantotropha periplasmic nitrate reductase. FEBS Lett. 345: 76–80

Brooks MH, Smith RL & Macalady DL (1992) Inhibition of existing denitrification activity by chloramphenicol. Applied Environ. Microbiol. 58: 1746–1753

Brudvig GW, Stevens TH & Chan SI (1980) Reactions of nitric oxide with cytochrome oxidase. Biochemistry 19: 5275–5285

Calder K, Burke KA & Lascelles J (1980) Induction of nitrate reductase and membrane cytochromes in wild type and chlorate-resistantParacocccus denitrificans. Arch. Microbiol. 126: 149–153

Carr GJ, Page MD & Ferguson SJ (1989) The energy conserving nitric-oxide-reductase system inParacoccus denitrificans: distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification. Eur. J. Biochem. 179: 683–692

Carr GJ & Ferguson SJ (1990a) The nitric oxide reductase ofParacoccus denitrificans. Biochem. J. 269: 423–429

—— (1990b) Nitric oxide formed by nitrite reductase ofParacoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions. Biochim. Biophys. Acta 1017: 57–62

Chang CK, Timkovich R & Wu W (1986) Evidence that heme d1 is a 1,3-porphyrindione. Biochemistry 25: 8447–8453

Cox JM, Day D & Anthony C (1992) The interaction of methanol dehydrogenase and its electron acceptor, cytochrome c L in methyloptrophic bacteria. Biochim. Biophys. Acta 1119: 97–106

Coyle CL, Zumft WG, Kroneck PMH, Körner H & Jakob W (1985) Nitrous oxide reductase from denitrifyingPseudomonas perfectomarina: purification and properties of a novel multicopper enzyme. Eur. J. Biochem. 153: 459–467

Coyne MS & Tiedje JM (1990) Induction of denitrifying enzymes in oxygen-limitedAchromobacter cycloclastes continous culture. FEMS Microbiol. Ecol. 73: 263–270

Craske A & Ferguson SJ (1986) The respiratory nitrate reductase fromParacoccus denitrificans. Molecular characterisation and kinetic properties. Eur. J. Biochem. 158: 429–436

Cuypers H & Zumft WG (1992) Regulatory components of the denitrification gene cluster ofPseudomonas stutzeri. In: Galli E, Silver S, & Witholt B (Eds) ‘Pseudomonas, Molecular Biology and Biotechnology’ (pp 188–197) American Society for Microbiology, Washington D.C.

—— (1993) Anaerobic control of denitrification inPseudomonas stutzeri escapes mutagenesis of anfnr-like gene. J. Bacteriol. 175: 7236–7246

Darwin A, Hussain H, Giffiths L, Grove J, Sambongi Y, Busby S & Cole JA (1993) Regulation and sequence of the structural gene for cytochromec 552 fromEscherichia coli: not a hexahaem but a 50kDa tetrahaem nitrite reductase. Mol. Microbiol. 9: 1255–1265

Davies KJP, Lloyd D & Boddy L (1989) The effect of oxygen on denitrification inParacoccus denitrificans andPseudomonas aeruginosa. J. Gen. Microbiol. 135: 2445–2451

de Boer APN, Reijnders WNM, Kuenen JG, Stouthamer AH & van Spanning RJM (1994) Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction inParacoccus denitrificans. Antonie van Leeuwenhoek 66 (in this issue)

Degli Esposti M. (1989) Prediction and comparison of the haembinding sites in membrane haemoproteins. Biochim. Biophys. Acta. 977: 249–265

DeMoss JA & Hsu P-Y (1991) NarK enhances nitrate uptake and nitrite excretion inEscherichia coli. J. Bact. 173: 3303–3310

Denis K, Dias FM & Rowe JJ (1990) Oxygen regulation of nitrate transport by diversion of electron flow inEscherichia coli. J. Biol. Chem. 265: 18095–18097

Dermastia M, Turk T & Hollocher TC (1991) Nitric oxide reductase. Purification fromParacoccus denitrificans with use of a single column and some characteristics. J. Biol. Chem. 266: 10899–10905

Doi M & Shioi Y (1991) Enhancement of denitrifying activity in cells ofRoseobacter denitrificans grown aerobically in the light. Plant Cell Physiol. 32: 365–370

Dubourdieu M & DeMoss JA (1992) ThenarJ gene product is required for biogenesis of respiratory nitrate reductase inEscherichia coli. J. Bact. 174: 867–872

Ferguson SJ (1988) Periplasmic electron transport reactions In: Anthony C (Ed) Bacterial Energy Transduction (pp 151–182) Academic Press, London

—— (1991) The functions and synthesis of bacterialc-type cytochromes with particular reference toParacoccus denitrificans andRhodobacter capsulatus. Biochim. Biophys. Acta 1058: 17–20

--(1992) The periplasm. In: Cole JA (Ed) ‘Prokaryotic Structure and Function-a New Perspective’ (pp 297–315) Society for General Microbiology Symposium 47

Ferguson SJ, Jackson JB & McEwan AG (1987) Anaerobic respiration in theRhodospirillacae; characterization of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS Microbiol. Revs 46: 117–143

Ford PC, Wink DA & Stanbury DM (1993) Autoxidation kinetics of aqueous nitric oxide. FEBS Lett. 326: 1–3

Frunzke K & Zumft WG (1986) Inhibition of nitrous-oxide respiration by nitric oxide in the denitrifying bacteriumPseudomonas perfectomarina. Biochim. Biophys. Acta. 852: 119–125

Fülöp V, Moir JWB, Ferguson SJ & Hajdu J (1993) Crystallization and preliminary crystallographic study of cytochromecd1 nitrite reductase fromThiosphaera pantotropha. J. Mol. Biol. 232: 1211–1212

Gallimand M, Gamper M, Zimmermann A & Haas D (1991) Positive FNR-like control of anaerobic arginine degradation and nitrate respiration inPseudomonas aeruginosa. J. Bacteriol. 173: 1598–1606

Garcia-Horsman JA, Berry EA, Shapleigh JA, Albern JO & Gennis RB (1994) A novel cytochrome c oxidase fromRhodobacter sphaeroides that lacks Cu A . Biochemistry 33: 3113–3119

Garland PB, Downie JA & Haddock BA (1975) Proton translocation and respiratory nitrate reductase ofEscherichia coli. Biochem. J. 152: 549–559

Glockner AB, Jungst A & Zumft, W.G. (1993) Copper-containing nitrite reductase fromPseudomoas aureofaciens is functional in a mutationally cytochromecd 1-free background (NirS−) ofPseudomoas stutzeri. Arch. Microbiol. 160: 18–26

Godden JW, Turley S, Teller DC, Adman ET, Liu MY, Payne WJ & LeGall J (1991) The 2.3 angstrom X-ray structure of nitrite reductase fromAchromobacter cycloclastes. Science 253: 438–442

Goretski J & Hollocher TC (1988) Trapping of nitric oxide produced during denitrification by extracellular hemoglobin. J. Biol. Chem. 263: 2316–2323

Goretski J, Zafiriou OC & Hollocher TC (1990) Steady-state nitric oxide concentrations during denitrification. J. Biol. Chem. 265: 11535–11538

Gray KA, Grooms M, Myllykallio H, Moomaw C, Slaughter C & Daldal F (1994)Rhodobacter capsulatus contains a novel cb-type cytochrome c oxidase without a Cu A center. Biochemistry 33: 3120–3127

Grossmann JG, Abraham ZHL, Adman ET, Neu M, Eady RR, Smith BE & Hasnain SS (1993) X-ray scattering using synchroton radiation shows nitrite reductase fromAchromobacter xylosoxidans to be a trimer in solution. Biochemistry 32: 7360–7366

Guest, JR (1992) Oxygen-regulated gene expression inEscherichia coli. J. Gen. Microbiol. 138, 2253–263

Heiss B, Frunzke K & Zumft WG (1989) Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome be complex of nitrate-respiring (denitrifying)Pseudomonas stutzeri. J. Bacteriol. 171: 3288–3297

Hernandez D & Rowe JJ (1988) Oxygen inhibition of nitrate uptake is a general regulatory mechanism in nitrate respiration. J. Biol. Chem. 263: 7937–7939

Hoeren FU, Berks BC, Ferguson SJ & McCarthy JEG (1993) Sequence and expression of the gene encoding the respiratory nitrous-oxide reductase fromParacoccus denitrificans. New and conserved structural and regulatory motifs. Eur. J. Biochem. 218: 49–57

Howes BD, Abraham Z, Lowe DJ, Brusler T, Eady RR & Smith BE (1994) EPR and Electron Nuclear Double resonance (ENDOR) studies show nitrite binding to the Type 2 copper centres of the dissimilatory nitrite reductase ofAlcaligenes xylosoxidans (NCIMB 11015). Biochemistry 33: 3171–3177

Hulse CL, Averill BA, Tiedje JM (1989) Evidence for a Copper nitrosyl intermediate in denitrification by the copper-containing nitrite reductase ofAchromobacter cycloclastes. J. Am. Chem. Soc. 111: 2322–2323

Jackson MA, Tiedje JM & Averill BA (1992) Evidence for an NO-rebound mechanism for the production of N2O from nitrite by the copper-containing nitrite reductase fromAchromobacter cycloclastes. FEBS Lett. 291: 41–44

John P (1977) Aerobic and anaerobic bacterial respiration monitored by electrodes. J. Gen. Microbiol. 98: 231–238

Jones AM, Adkins AM, Knowles R & Rayat GR (1990) Identification of a denitrifying gliding bacterium, isolated from soil and able to reduce nitrous oxide in the presence of sulphide and acetylene, asFlexibacter canadensis. Can. J. Microbiol. 36: 765–770

Jones AM, Hollocher TC & Knowles R (1992) Nitrous oxide reductase ofFlexibacter canadensis: a unique membrane-bound enzyme. FEMS Microbiol. Letts. 92: 205–210

Jones MR, Richardson DJ, McEwan AG, Ferguson SJ & Jackson JB (1990)In vivo redox poising of the cyclic electron transport system ofRhodobacter capsulatus and the effects of the auxiliary oxidants, nitrate, nitrous oxide and trimthylamine-N-oxide, as revealed by multiple short flash excitation. Biochim. Biophys. Acta 1017: 209–216

Jüngst A, Wakabayashi S, Matsubara H & Zumft, WG (1991a) ThenirSTBM region coding for cytochromecd1-dependent nitrite respiration ofPseudomonas stutzeri consists of a cluster of mono-, di-, and tetraheme proteins. FEBS Lett. 279: 205–209

Jüngst, A., Braun, C. and Zumft, WG (1991b) Close linkage inPseudomonas stutzeri of the structual genes for respiratory nitrite reductase and nitrous oxide reductase, and other essential genes for denitrification. Mol. Gen. Genet. 225, 241–248

Jüngst A & Zumft WG (1992) Interdependence of respiratory NO reduction and nitrite reduction revealed by mutagenesis ofnirQ, a novel gene in the denitrification cluster ofPseudomonas stutzeri. FEBS Lett. 314: 308–314

Kakutani T, Watanabe H, Arima K & Beppu T (1981) A blue protein as an inactivating factor for nitrite reductase fromAlcaligenes faecalis strain S6. J. Biochem. 89: 463–472

Kell DB, John P, Sorgato MC & Ferguson SJ (1978) Continuous monitoring of the electrical potential across energy transducing membranes using ion-selective electrodes. FEBS Lett. 86: 294–298

Kharitonov VG, Sudquist AR & Sharma VS (1994) Kinetics of nitric oxide autooxidation in aqueous solution. J. Biol. Chem. 269: 5881–5883

Kirstein K & Bock E (1993) Close genetic relationship betweenNitrobacter hamburgensis nitrite oxidoreductase andEscherichia coli nitrate reductase. Arch. Microbiol. 160, 447–453

Körner H (1993) Anaerobic expression of nitric oxide reductase from denitrifyingPseudomonas stutzeri. Arch. Microbiol. 159: 410–416

Körner H & Zumft WG (1989) Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture ofPseudomonas stutzeri. Appl. Environ. Microbiol. 55: 1670–1676

Kroneck PMH, Antholine WA, Riester J & Zumft WG (1989) The nature of the cupric site in nitrous oxide reductase and ofCuA in cytochromec oxidase. FEBS Lett. 248: 212–213

Kroneck PMH, Antholine WA, Kastrau DHW, Buse G, Steffens GCM & Zumft WG (1990) Multifrequency EPR evidence for a bimetallic centre at theCu A site in Cytochromec oxidase. FEBS Letts. 268: 274–276

Kroneck PMH, Beuerle J & Schumacher W (1992) Metal-dependent conversion of inorganic nitrogen and sulphur compounds. In: Sigel H & Sigel A (Eds) Metal Ions in Biological Systems 28 (pp 455–505) Marcel Dekker, Basel & New York

Kučera I, Karlovsky P & Dadák V (1981) Control of nitrate respiration inParacoccus denitrificans by oxygen. FEMS Microbiol. Lett. 12: 391–394

Kučera I, Boublikova P & Dadák V (1984) Function of terminal acceptors in the biosynthesis of denitrification pathway components inParacoccus denitrificans. Folia Microbiol. 29: 108–114

Kučera I, Kozak L & Dadák V (1986a) The inhibitory effect of nitrite on the oxidase activity of cells ofParacoccus denitrificans. FEBS Lett. 205: 333–336

—— (1987) Aerobic dissimilatory reduction of nitrite by cells ofParacoccus denitrificans: the role of nitric oxide. Biochim. Biophys. Acta 894: 120–126

Kučera I, Matyasek R, Dvorakova J & Dadák V (1986b) Anaerobic adaptation ofParacoccus denitrificans: Sequential formation of denitrification pathway and changes in activity of 5-aminolevulinate synthase and catalase. Curr. Microbiol. 13: 107–110

Kučera I, Matyasek R & Dadák V (1986c) The influence of pH on the kinetics of dissimilatory nitrite reduction inParacoccus denitrificans. Biochim. Biophys. Acta 848: 1–7

Kučera I, Hedbavny R & Dadák V (1988) Separate binding sites for antimycin and mucidin in the respiratory chain of the bacteriumParacoccus denitrificans and their occurrence in other denitrifying bacteria. Biochem. J. 252: 905–908

Kučera I, Mat'chová I & Dadák V (1990) Respiratory rates as a regulatory factor in the biosynthesis of the denitrification pathway of the bacteriumParacoccus denitrificans. Biocatalysis 4: 29–37

Libby E & Averill BA (1992) Evidence that the type 2 copper centers are the site of nitrite reduction byAchromobacter cycloclastes nitrite reductase. Biochem. Biophys. Res. Comm. 187: 1529–1535

Liu M-Y, Liu M-C, Payne WJ, Peck HD & LeGall J (1983) Cytochrome components of denitrifyingPseudomonas stutzeri. Curr. Microbiol. 9: 87–92

Lloyd D, Boddy L, Davies KJP (1987) Persistance of bacterial denitrification under aerobic conditions: the rule rather than the exception. FEMS Microbiol. Ecol. 45: 185–190

Ludwig W, Mittenhuber G & Friedrich CG (1993) Transfer ofThiosphaera pantotropha toParacoccus denitrificans. Int. J. System. Bacteriol. 43: 363–367

Malmstrom BG & Aasa R (1993) The nature of the Cu A center in cytochrome oxidase. FEBS Lett. 325: 49–52.

Mat'chová I & Kučera I (1991) Evidence for the role of soluble cytochromec in the dissimilatory reduction of nitrite and nitrous oxide by cells ofParacoccus denitrificans. Biochim. Biophys. Acta. 1058: 256–260

Mat'chová I, Kučera I, Janiczek O, van Spanning, RJM & Oltmann, LF (1993) The existence of an alternative electron-transfer pathway to the periplasmic nitrite reductase inParacoccus denitrificans. Arch. Microbiol. 159: 272–275

Matsuura K, Hori M & Satoh T (1988) Heterogeneous pools of cytochromec 2 in photo-denitrifying cells ofRhodobacter spaheroides forma sp.denitrificans. J. Biochem. 104: 1016–1020

McCarthy JEG & Ferguson SJ (1981) Respiratory control and the basis of light-induced inhibition of respiration in chromatophores fromRhodopseudomonas capsulata. Biochem. Biophys. Res. Commun. 107: 1406–1411

McEwan AG (1994) Antonie van Leeuwehoek 66 (in this issue)

McEwan AG, George CL, Ferguson SJ & Jackson JB (1982) A nitrate reductase activity inRhodopseudomonas capsulata linked to electron transfer and generation of membrane potential. FEBS Lett. 150: 277–280

McEwan AG, Cotton NPJ, Ferguson SJ & Jackson JB (1983) The inhbition of nitrate reduction by light inRhodopseudomonas capsulata is mediated by membrane potential but inhibition by oxygen is not. In: Sybesma C (Ed) Proceedings of 6th International Photosynthetic Congress II (pp 449–452)

McEwan AG, Jackson JB & Ferguson SJ (1984) Rationalisation of the properties of nitrate reductase inRhodopseudomonas capsulata. Arch. Microbiol. 137: 344–349

McEwan AG, Greenfield AJ, Wetzstein HG, Jackson JB & Ferguson SJ (1985) Nitrous oxide reduction by members of the familyRhodospirillaceae and the nitrous oxide reductase ofRhodopseudomonas capsulata. J. Bacteriol. 164: 823–830

Merchant S, Hill K & Howe G (1991) Dynamic interplay between two copper-titrating compounds in the transcriptional regulation of cytochromec 6. EMBO J. 10: 1383–1389

Moir JWB (1993) D. Phil thesis, University of Oxford

Moir JWB & Ferguson SJ (1994) Properties of aParacoccus denitrificans mutant deleted in cytochromec 550 indicate that a copper protein can subsitute for this cytochrome in electron transport to nitrite, nitric oxide and nitrous oxide. Microbiology 140: 389–397

Moir JWB, Baratta, D, Richardson DJ & Ferguson SJ (1993) The purification of a cd1 type nitrite reductase and the absence of a copper nitrite reductase from the aerobic denitrifierThiosphaera pantotropha; the role of pseudoazurin as an electron donor. Eur. J. Biochem. 212: 377–385

Morpeth F & Boxer DH (1985) Kinetic analysis of respiratory nitrate reductase fromEscherichia coli. Biochemistry 24: 40–46

Nakahara K, Tanimoto T, Hatano K, Usuda K & Shoun H (1993) Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J. Biol. Chem. 268: 8350–8355

Nicholls DG & Ferguson SJ (1992) Bioenergetics 2, Academic Press, London

Noji S & Taniguchi S (1987) Molecular oxygen controls nitrate transport ofEscherichia coli nitrate-respiring cells. J. Biol. Chem. 262: 9441–9443

Noji S, Nohno T, Saito T & Taniguchi S (1989) ThenarK gene product participates in nitrate transport inEscherichia coli nitraterespiring cells. FEBS Letts. 252: 139–143

Ohshima T, Sugiyama M, Uozumi N, Iijima S & Kobayashi T (1993) Cloning and sequencing of a gene encoding nitrite reductase fromParacoccus denitrificans and expression of the gene inEscherichia coli. J. Ferment. Bioeng. 76: 82–88

Page MD & Ferguson SJ (1993) Mutants ofMethylobacterium extorquens andParacoccus denitrificans deficient inc-type cytochrome biogenesis synthesise the methylamine dehydrogenase polypeptides but cannot assemble the tryptophan-tryptophyl quinone group. Eur. J. Biochem. 218: 711–717

Parsonage D, Greenfield AJ & Ferguson SJ (1985) The high affinity ofParacoccus denitrificans cells for nitrate as an electron acceptor. Analysis of possible mechanisms of nitrate and nitrite movement across the plasma membrane and the basis for inhibition by added nitrite of oxidase activity in permeabilised cells. Biochim. Biophys. Acta. 807: 81–95

Richardson DJ, King GF, Kelly DJ, McEwan AG Ferguson SJ & Jackson JB (1988) The role of auxiliary oxidants in maintaining redox balance during phototrophic growth ofRhodobacter capsulatus on propionate or butyrate. Arch. Microbiol. 150: 131–137

Richardson DJ, McEwan AG, Jackson JB & Ferguson SJ (1989) Electron transport pathways to nitrous oxide inRhodobacter species. Eur. J. Biochem. 185: 659–669

Richardson DJ, McEwan AG, Page MLD, Jackson JB & Ferguson SJ (1990) The identification of cytochromes involved in the transfer of electrons to the periplasmic NO −3 reductase ofRhodobacter capsulatus and resolution of a soluble NO −3 -cytochrome c552 redox complex. Eur. J. Biochem. 194: 263–270

Richardson DJ, Bell LC, McEwan AG, Jackson JB & Ferguson SJ (1991) Cytochromec 2 is essential for electron transfer to nitrousoxide reductase from physiological substrates inRhodobacter capsulatus and can act as an electron donor to the reductasein vitro: correlation with photoinhibition studies. Eur. J. Biochem. 199: 677–683

Richardson DJ & Ferguson SJ (1992) The influence of carbon substrate on the activity of the periplasmic nitrate reductase in aerobically grownThiosphaera pantotropha. Arch. Microbiol. 157: 535–537

Richardson DJ, Bell LC, Moir JWB & Ferguson SJ (1994) A denitrifying strain ofRhodobacter capsulatus. FEMS Microbiol. Lett. 121: 1–10

Robertson LA & Kuenen JG (1984) Aerobic denitrification: a controversy revived. Archiv. Microbiol. 139: 351–354

Rowe JJ, Ubbink-Kok T, Molenaar D, Konings WN & Driesen AJM (1994) NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration byEscherichia coli. Mol. Microbiol. 12: 579–586

Sabaty M, Gans P & Verméglio A (1993) Inhibition of nitrate reduction by light and oxygen inRhodobacter sphaeroides forma sp.denitrificans. Arch. Microbiol. 159: 153–159

Saraste M & Catresana J (1994) Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett. 341: 1–4

Satoh T (1977) Light-activated, -inhibited -independent denitrification by a denitrifiying phototrophic bacterium. Arch. Microbiol. 115: 293–298

—— (1981) Soluble dissimilatory nitrate reductase containing cytochrome c from a photodenitrifier,Rhodopseudomonas sphaeroides forma sp.denitrificans. Plant Cell Physiol. 22: 443–452

Satoh T, Hoshino Y & Kitamura H (1976)Rhodopseudomonas sphaeroides sp.denitrificans, a denitrifying strain as a subspecies ofRhodopseodomonas sphaeroides. Archiv. Microbiol. 108: 265–269

Scott RA, Zumft WG, Coyle CL & Dooley, DM (1989)Pseudomonas stutzeri N2O reductase containsCu A-type sites. Proc. Natl. Acad. Sci. USA 86: 4082–4086

Sears HJ, Ferguson SJ, Richardson DJ & Spiro S (1993) The identification of a periplasmic nitrate reductase inParacoccus denitrificans. FEMS Microbiol. Lett. 113: 107–112

Shapleigh JP & Payne WJ (1985) Nitric oxide-dependent proton translocation in various denitrifiers. J. Bacteriol. 163: 837–840

Shoun H, Kim D-H, Uchiyama H & Sugiyama J (1992) Denitrification by fungi. FEMS Microbiol. Lett. 94: 277–282

Siddiqui RA, Warnecke-Eberz U, Hengsberger A, Schneider, B, Kostka S & Friedrich B (1993) Structure and function of a periplasmic nitrate reductase inAlcaligenes eutrophus H16. J. Bacteriol. 175: 5867–5876

Silvestrini MC, Galeotti CL, Gervais M, Schinina E, Barra D, Bossa F & Brunori M. (1989) Nitrite reductase fromPseudomonas aeruginosa: sequence of the gene and the protein. FEBS Lett. 254: 33–38

Smith GB & Tiedje JM (1992) Isolation and characterisation of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl. Env. Microbiol. 58: 376–384

Sodergren EJ & DeMoss JA (1988)nar1 region of theEscherichia coli nitrate reductase (nar) operon contains two genes. J. Bact. 170: 1721–1729

Spiro S (1992) An FNR-dependent promoter fromEscherichia coli is active and anaerobically inducible inParacoccus denitrificans FEMS Microbiol. Lett. 98: 145–148

-- (1994) Antonie van Leeuwehoek 66 (in this issue)

Spiro S & Guest JR (1990) FNR and its role in oxygen-regulated gene expression inEscherichia coli FEMS Microbiol. Lett. 75: 399–428

—— (1991) Adaptive responses to oxygen limitation inEscherichia coli. Trends Biochem. Sci. 16: 310–314

Stewart V (1988) Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol. Rev. 52: 190–232

Stewart V (1994) Antonie van Leeuwehoek 66 (in this issue)

Stouthamer AH (1991) Metabolic regulation including anaerobic metabolism inParacoccus denitrificans. J. Bioenerg. Biomembr. 23: 163–185

—— (1992) Metabolic pathways inParacoccus denitrificans and closely related bacteria in relation to phylogeny of prokaryotes. Antonie van Leeuwenhoek 61: 1–33

Teraguchi S & Hollocher TC (1989) Purification and some characteristics of a cytochromec-containing nitrous oxide reductase fromWolinella succinogenes. 264: 1972–1979

Thomas KL, Lloyd D & Boddy L (1994) Effects of oxygen, pH and nitrate concentration on denitrification byPseudomonas species. FEMS Microbiol. Lett. 118: 181–186

Thomsen JK, Geest T & Cox RP (1994) Mass spectrometric studies of the effect of pH on the accumulation of intermediats in denitrification byParacoccus denitrificans. Appl. Environ. Microbiol. 60: 536–541

Thomsen JK, Lonsmann Iversen JJ & Cox RP (1993) Interactios between respiration and denitrification during growth ofThiosphaera pantotropha in continuous culture. FEMS Microbiol. Lett. 110: 319–324

Timkovich R & Robinson MK (1979) Evidence for water as the product for oxygen reduction by cytochrome cd1. Biochem. Biophys. Res. Commun. 88: 649–655

Trost JT, McManus JD, Freeman JC, Ramakrishna BL & Blankenship RE (1988) Auracyanin, a blue copper protein from the green photosynthetic bacteriumChloroflexus aurantiacus. Biochemistry 27: 7858–7863

Turner N, Ballard AL, Bray RC & Ferguson S (1988) Investigation by electron paramgnetic resonance spectroscopy of the molybdenum centre of respiratory nitrate reductase fromParacoccus denitrificans. Biochem. J. 252: 925–926

Van der Oost J, de Boer APN, de Gier J-WL, Zumft WG, Stouthamer AH & van Spanning RJM (1994) The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol. Lett. 121: 1–10.

Van Spanning RJM, Wansell C, Harms N, Oltmann LF & Stouthamer AH (1990) Mutagenesis of the gene encoding cytochromec 5 50 ofParacoccus denitrificans and analysis of the resultant physiological effects. J. Bact. 172: 986–996. A correction to the amino acid sequence of cytochrome c550 reported in this paper can be found in J. Bact. 172: 3534

Viebrock A & Zumft WG (1988) Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifyingPseudomonas stutzeri. J. Bact. 170: 4658–4668

Wood PM (1978) Interchangeable copper and iron proteins in algal photosynthesis. Eur. J. Biochem. 87: 9–19

Wu W & Chang CK (1987) Structure of dioneheme. Total synthesis of the green heme prosthetic group in cytochrome cd 1 dissimilatory nitrite reductase. J. Am. Chem. Soc. 109: 3149–3150

Ye RW, Fries MR, Bezborodnikov SG, Averill BA & Tiedje JM (1993) Characterization of the structural gene encoding a copper-containing nitrite reductase and homology of this gene to DNA of other denitrifiers. Appl. Environ. Microbiol. 59: 250–254

Ye RW, Averill BA, & Tiedje JM (1992a) Characterisation of Tn5 mutants deficient in dissimilatory nitrite reduction inPseudomonas sp. strain G-179 which contains a copper nitrite reductase. J. Bacteriol. 174: 6653–6658

—— (1994) Denitrification: Production and consumption of nitric oxide. Applied Environmental Microbiology 60: 1053–1058

Ye RW, Arunakumari A, Averill BA & Tiedje JM (1992b) Mutants ofPseudomonas fluorescens deficient in dissimilatory nitrite reduction are also altered in nitric oxide reduction. J. Bacteriol. 174: 2560–2564

Yokota S, Urata K & Satoh T (1984) Redox properties of membrane-boundb-type cytochromes and a solublec-type cytochrome of nitrate reductase in a photodenitrifier,Rhodopseudomonas sphaeroides forma sp.denitrificans. J. Biochem. 95: 1535–1541

Yoshimura T, Shidara S, Ozaki T & Kamada H (1993) Five coordination nitrosylhemoprotein in the whole cells of denitrifying bacteriumAchromobacter xylosoxidans NCIB 11015. Arch. Microbiol. 160: 498–500

Zannoni D & Daldal F (1993) The role of c-type cytochromes in catalyzing oxidative and photosynthetic electron transport in the dual functional plasmamembrane of facultative phototrophs. Arch. Microbiol. 160: 413–423

Zumft WG (1992) The denitrifying prokaryotes, In: Balows A, Trüper HG, Dworkin M, Harder W, & Schleifer K-H (Eds) The Prokaryotes, 2nd. Ed. (pp 554–582) Springer-Verlag, Berlin

—— (1993) The biological role of nitric oxide in bacteria. Arch. Microbiol. 160: 253–264

Zumft WG, Döhler K, Körner H, Löchelt S, Viebrock A & Frunzke, K (1988) Defects in cytochromecd1-dependentnitrite respiration of transposonTn5-induced mutants fromPseudomonas stutzeri. Arch. Microbiol. 149: 492–498

Zumft WG, Dreusch A, Löchelt S, Cuypers H, Friedrich B & Schneider B (1992) Derived amino acid sequences of thenosZ gene (respiratory N2O reductase) fromAlcaligenes eutrophus, Pseudomonas aeruginosa andPseudomonas stutzeri reveal potential copper binding residues; implications for the Cu A site of N2O reductase and cytochromec oxidase. Eur. J. Biochem. 208: 31–40

Zumft WG, Braun C & Cuypers H (1994) Nitric oxide reductase fromPseudomonas stutzeri. Primary structure and gene organisation of a novel bacterial cytochromebc complex. Eur. J. Biochem. 219: 481–490