Dendritic nanoarchitecture imparts ZSM-5 zeolite with enhanced adsorption and catalytic performance in energy applications
Tài liệu tham khảo
Maity, 2017, ChemSusChem, 10, 3866, 10.1002/cssc.201701076
Hao, 2020, Nanoscale Adv., 2, 1792, 10.1039/D0NA00219D
Wang, 2019, J. Mater. Chem. A, 7, 5111, 10.1039/C8TA09815H
Wang, 2017, Chem. Eng. J., 327, 932, 10.1016/j.cej.2017.06.184
Lee, 2019, Chem. Eng. J., 378
Yuan, 2020, Chem. Eng. J., 385
Primo, 2014, Chem. Soc. Rev., 43, 7548, 10.1039/C3CS60394F
Davis, 2014, Chem. Lett., 26, 239
Shi, 2015, Chem. Soc. Rev., 44, 8877, 10.1039/C5CS00626K
Jiang, 2010, Angew. Chem. Int. Ed., 49, 3120, 10.1002/anie.200904016
Dai, 2020, Nat. Mater., 19, 1074, 10.1038/s41563-020-0753-1
Peng, 2020, Natl. Sci. Rev., 7, 1726, 10.1093/nsr/nwaa184
Jain, 2021, Adv. Mater., 33, 1, 10.1002/adma.202100897
Pérez-Ramírez, 2008, Chem. Soc. Rev., 37, 2530, 10.1039/b809030k
Serrano, 2013, Chem. Soc. Rev., 42, 4004, 10.1039/C2CS35330J
Mintova, 2015, Chem. Soc. Rev., 44, 7207, 10.1039/C5CS00210A
Hartmann, 2021, Adv. Mater. Interfaces, 8, 2001841, 10.1002/admi.202001841
Díaz, 2014, Dalt. Trans., 43, 10292, 10.1039/c3dt53181c
Roth, 2014, Chem. Rev., 114, 4807, 10.1021/cr400600f
Shete, 2017, Angew. Chem. Int. Ed., 56, 535, 10.1002/anie.201607063
Přech, 2018, Chem. Soc. Rev., 47, 8263, 10.1039/C8CS00370J
Hartmann, 2016, Chem. Soc. Rev., 45, 3313, 10.1039/C5CS00935A
Teh, 2016, Appl. Catal. A Gen., 523, 200, 10.1016/j.apcata.2016.05.031
Firmansyah, 2016, Catal, Sci. Technol., 6, 5178
Hambali, 2021, Int. J. Hydrogen Energy, 46, 24652, 10.1016/j.ijhydene.2019.11.236
Wang, 2017, Angew. Chem. Int. Ed., 56, 11764, 10.1002/anie.201704499
Kumar, 2004, J. Catal., 227, 384, 10.1016/j.jcat.2004.08.003
Rahimi, 2011, Appl. Catal. A Gen., 398, 1, 10.1016/j.apcata.2011.03.009
Cheng, 2012, Green Chem., 14, 3114, 10.1039/c2gc35767d
Serrano, 2006, Chem. Mater., 18, 2462, 10.1021/cm060080r
Escola, 2008, J. Mater. Chem., 18, 4210, 10.1039/b805502e
J. Ahrens, B. Geveci, C. Law, ParaView : An End-User Tool for Large-Data Visualization, 2005.
Levin, 2018, Micros. Today, 26, 12, 10.1017/S1551929517001213
M.D. Hanwell, U. Ayachit, D.A. Muller, htpps://tomviz.org. (Last date access July 14th, 2022).
Emeis, 1993, J. Catal., 141, 347, 10.1006/jcat.1993.1145
Alonso-Doncel, 2021, J. Mater. Chem. A, 9, 13570, 10.1039/D1TA01521D
Shamzhy, 2021, ACS Catal., 11, 2366, 10.1021/acscatal.0c05332
Li, 2016, Micropor. Mesopor. Mater., 221, 108, 10.1016/j.micromeso.2015.09.028
Zhang, 2020, Angew. Chem. Int. Ed., 59, 50, 10.1002/anie.201903364
Alonso-Doncel, 2020, Micropor. Mesopor. Mater., 303, 10.1016/j.micromeso.2020.110189
Liu, 2017, Green Chem., 19, 5575, 10.1039/C7GC02139A
Oldfield, 1994, Zeolites, 14, 101, 10.1016/0144-2449(94)90003-5
Alonso-Doncel, 2020, Catal. Today, 345, 27, 10.1016/j.cattod.2019.11.031
Serrano, 2012, ACS Catal., 2, 1924, 10.1021/cs3003403
Vollmer, 2021, Angew. Chem. Int. Ed., 60, 16101, 10.1002/anie.202104110
Peral, 2016, Catal. Sci. Technol., 6, 2754, 10.1039/C5CY02075A
Yao, 2022, J. Therm. Anal. Calorim., 147, 14257, 10.1007/s10973-022-11745-2
Serrano, 2011, J. Catal., 279, 366, 10.1016/j.jcat.2011.02.007
Serrano, 2015, Int. J. Hydrogen Energy, 40, 5237, 10.1016/j.ijhydene.2015.01.056
Botas, 2010, Int. J. Hydrogen Energy, 35, 9788, 10.1016/j.ijhydene.2009.10.031
Serrano, 2013, Int. J. Hydrogen Energy, 38, 5671, 10.1016/j.ijhydene.2013.02.112