Dendritic mesoporous organosilica nanoparticles (DMONs): Chemical composition, structural architecture, and promising applications
Tài liệu tham khảo
Kresge, 1992, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359, 710, 10.1038/359710a0
Ryoo, 2019, Birth of a class of nanomaterial, Nature, 575, 40, 10.1038/d41586-019-02835-7
Davis, 2002, Ordered porous materials for emerging applications, Nature, 417, 813, 10.1038/nature00785
Yang, 2019, Mesoporous silica/organosilica nanoparticles: synthesis, biological effect and biomedical application, Mater. Sci. Eng.: R: Rep., 137, 66, 10.1016/j.mser.2019.01.001
Bagheri, 2015, Progress on mesoporous titanium dioxide: synthesis, modification and applications, Microporous Mesoporous Mater., 218, 206, 10.1016/j.micromeso.2015.05.028
Liang, 2008, Mesoporous carbon materials: synthesis and modification, Angew. Chem. Int. Ed. Engl., 47, 3696, 10.1002/anie.200702046
Wang, 2018, Confined self-assembly in two-dimensional interlayer space: monolayered mesoporous carbon nanosheets with in-plane orderly arranged mesopores and a highly graphitized framework, Angew. Chem. Int. Ed., 57, 2894, 10.1002/anie.201712959
Tang, 2012, Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery, Adv. Mater., 24, 1504, 10.1002/adma.201104763
Wu, 2013, Synthesis of mesoporous silica nanoparticles, Chem. Soc. Rev., 42, 3862, 10.1039/c3cs35405a
Pal, 2020, Recent trends in morphology-controlled synthesis and application of mesoporous silica nanoparticles, Nanomaterials, 10, 2122, 10.3390/nano10112122
Farjadian, 2019, Mesoporous silica nanoparticles: synthesis, pharmaceutical applications, biodistribution, and biosafety assessment, Chem. Eng. J., 359, 684, 10.1016/j.cej.2018.11.156
Kholafazad Kordasht, 2020, Multifunctional aptasensors based on mesoporous silica nanoparticles as an efficient platform for bioanalytical applications: recent advances, TrAC Trends Anal. Chem., 124, 10.1016/j.trac.2019.115778
Li, 2019, Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer, Acta Biomater., 89, 1, 10.1016/j.actbio.2019.02.031
Kankala, 2020, Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles, Adv. Mater., 32, 10.1002/adma.201907035
Doustkhah, 2019, Development of sulfonic-acid-functionalized mesoporous materials: synthesis and catalytic applications, Chemistry, 25, 1614, 10.1002/chem.201802183
Teng, 2019, Mesoporous organosilica hollow nanoparticles: synthesis and applications, Adv. Mater., 31
Croissant, 2015, Syntheses and applications of periodic mesoporous organosilica nanoparticles, Nanoscale, 7, 20318, 10.1039/C5NR05649G
Croissant, 2018, Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications, Adv. Healthc. Mater., 7, 10.1002/adhm.201700831
Chinnathambi, 2020, Recent development to explore the use of biodegradable periodic mesoporous organosilica (bpmo) nanomaterials for cancer therapy, Pharmaceutics, 12, 890, 10.3390/pharmaceutics12090890
Yu, 2018, Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery, Biomaterials, 161, 292, 10.1016/j.biomaterials.2018.01.046
Chen, 2016, Chemistry of mesoporous organosilica in nanotechnology: molecularly organic-inorganic hybridization into frameworks, Adv. Mater., 28, 3235, 10.1002/adma.201505147
Poscher, 2020, Trends in degradable mesoporous organosilica-based nanomaterials for controlling drug delivery: a mini review, Materials, 13, 3668, 10.3390/ma13173668
Guimarães, 2020, Overview of stimuli-responsive mesoporous organosilica nanocarriers for drug delivery, Pharmacol. Res., 155, 10.1016/j.phrs.2020.104742
Cheng, 2020, Controllable synthesis of versatile mesoporous organosilica nanoparticles as precision cancer theranostics, Biomaterials, 256, 10.1016/j.biomaterials.2020.120191
Du, 2018, Disulfide‐bridged organosilica frameworks: designed, synthesis, redox‐triggered biodegradation, and nanobiomedical applications, Adv. Funct. Mater., 28, 10.1002/adfm.201707325
Du, 2016, Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery, Biomaterials, 91, 90, 10.1016/j.biomaterials.2016.03.019
2013, Ordered Mesoporous Materials, 153
Wang, 2019, Dendritic fibrous nano-particles (DFNPs): rising stars of mesoporous materials, J. Mater. Chem. A, 7, 5111, 10.1039/C8TA09815H
Hao, 2020, Comprehensive understanding of the synthesis and formation mechanism of dendritic mesoporous silica nanospheres, Nanoscale Adv., 2, 1792, 10.1039/D0NA00219D
Du, 2015, Dendritic silica particles with center-radial pore channels: promising platforms for catalysis and biomedical applications, Small, 11, 392, 10.1002/smll.201401201
Maity, 2017, Dendritic fibrous nanosilica for catalysis, energy harvesting, carbon dioxide mitigation, drug delivery, and sensing, ChemSusChem, 10, 3866, 10.1002/cssc.201701076
Wang, 2020, Structure-dependent adsorptive or photocatalytic performances of solid and hollow dendritic mesoporous silica & titania nanospheres, Microporous Mesoporous Mater., 305, 10.1016/j.micromeso.2020.110326
Wang, 2018, Selective extraction of thorium from rare earth elements using wrinkled mesoporous carbon, J. Am. Chem. Soc., 140, 14735, 10.1021/jacs.8b07610
Zhang, 2014, Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface, Adv. Mater., 26, 4121, 10.1002/adma.201400573
Yang, 2014, Controllable fabrication of dendritic mesoporous silica–carbon nanospheres for anthracene removal, J. Mater. Chem. A, 2, 11045, 10.1039/c4ta01516a
Li, 2014, Synthesis of radial mesoporous bioactive glass particles to deliver osteoactivin gene, J. Mater. Chem. B, 2, 7045, 10.1039/C4TB00883A
Sheng, 2015, Monodisperse aluminosilicate spheres with tunable Al/Si ratio and hierarchical macro-meso-microporous structure, ACS Appl. Mater. Interfaces, 7, 13578, 10.1021/acsami.5b03011
Lai, 2016, Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper–aluminum–silica nanospheres for water purification, J. Mater. Chem. A, 4, 8610, 10.1039/C6TA02276F
Mignani, 2018, Dendrimers in combination with natural products and analogues as anti-cancer agents, Chem. Soc. Rev., 47, 514, 10.1039/C7CS00550D
Du, 2013, Developing functionalized dendrimer-like silica nanoparticles with hierarchical pores as advanced delivery nanocarriers, Adv. Mater., 25, 5981, 10.1002/adma.201302189
Wang, 2019, Improving the size uniformity of dendritic fibrous nano-silica by a facile one-pot rotating hydrothermal approach, RSC Adv., 9, 24783, 10.1039/C9RA04845F
Fu, 2020, Fractal-in-a-sphere: confined self-assembly of fractal silica nanoparticles, Chem. Mater., 32, 341, 10.1021/acs.chemmater.9b03864
Wang, 2020, Superhydrophobic magnetic core–shell mesoporous organosilica nanoparticles with dendritic architecture for oil–water separation, Mater. Chem. Front., 4, 2184, 10.1039/D0QM00246A
Kalantari, 2018, Superhydrophobic dendritic mesoporous organosilica nano-particles with ultrahigh-content of gradient organic moieties, J. Mater. Chem. A, 6, 17579, 10.1039/C8TA06268D
Kalantari, 2019, Dendritic mesoporous carbon nanoparticles for ultrahigh and fast adsorption of anthracene, Chemosphere, 215, 716, 10.1016/j.chemosphere.2018.10.071
Kalantari, 2020, Thiolated silica nanoadsorbents enable ultrahigh and fast decontamination of mercury(ii): understanding the contribution of thiol moieties’ density and accessibility on adsorption performance, Environ. Sci. Nano, 7, 851, 10.1039/C9EN01123D
Yang, 2016, Anion assisted synthesis of large pore hollow dendritic mesoporous organosilica nanoparticles: understanding the composition gradient, Chem. Mater., 28, 704, 10.1021/acs.chemmater.5b03963
Yang, 2017, Multi-shelled dendritic mesoporous organosilica hollow spheres: roles of composition and architecture in cancer immunotherapy, Angew. Chem. Int. Ed. Engl., 56, 8446, 10.1002/anie.201701550
Shan, 2019, One-pot co-condensation strategy for dendritic mesoporous organosilica nanospheres with fine size and morphology control, CrystEngComm, 21, 4030, 10.1039/C9CE00593E
Lu, 2018, Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced cancer immunotherapy, Biomaterials, 175, 82, 10.1016/j.biomaterials.2018.05.025
Shi, 2020, Effects of synthetic routes on the compositional and structural properties of dendritic mesoporous organosilica nanoparticles: The unexpected reversed “double-edged sword” role of reaction time, Microporous Mesoporous Mater., 294, 10.1016/j.micromeso.2019.109914
You, 2020, Dendritic mesoporous organosilica nanoparticles: a pH-triggered autocatalytic fenton reaction system with self-supplied H2O2 for generation of high levels of reactive oxygen species, Langmuir, 36, 5262, 10.1021/acs.langmuir.0c00603
Jambhrunkar, 2020, Pristine large pore benzene-bridged mesoporous organosilica nanoparticles as an adjuvant and co-delivery platform for eliciting potent antitumor immunity, Mater. Today Adv., 6
Gao, 2017, Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization, Chem. Eng. J., 309, 70, 10.1016/j.cej.2016.10.021
Dang, 2017, Mesoporous organosilica nanoparticles with large radial pores via an assembly-reconstruction process in bi-phase, J. Mater. Chem. B, 5, 2625, 10.1039/C6TB03327J
Kalantari, 2018, Designed synthesis of organosilica nanoparticles for enzymatic biodiesel production, Mater. Chem. Front., 2, 1334, 10.1039/C8QM00078F
Yang, 2016, Structure-dependent and glutathione-responsive biodegradable dendritic mesoporous organosilica nanoparticles for safe protein delivery, Chem. Mater., 28, 9008, 10.1021/acs.chemmater.6b03896
Li, 2020, Fabrication of biodegradable auto-fluorescent organosilica nanoparticles with dendritic mesoporous structures for pH/redox-responsive drug release, Mater. Sci. Eng. C Mater. Biol. Appl., 112, 10.1016/j.msec.2020.110914
Theivendran, 2019, Synthesis of biphenyl bridged dendritic mesoporous organosilica with extremely high adsorption of pyrene, J. Mater. Chem. A, 7, 12029, 10.1039/C9TA01281H
Shao, 2018, Bioinspired Diselenide-Bridged Mesoporous Silica Nanoparticles for Dual-Responsive Protein Delivery, Adv. Mater., 30
Liu, 2017, Endogenous catalytic generation of O2 bubbles for in situ ultrasound-guided high intensity focused ultrasound ablation, ACS Nano, 11, 9093, 10.1021/acsnano.7b03772
Wang, 2020, Functional nanoparticles with a reducible tetrasulfide motif to upregulate mRNA translation and enhance transfection in hard‐to‐transfect cells, Angew. Chem. Int. Ed., 59, 2695, 10.1002/anie.201914264
Wu, 2020, A pH-activated autocatalytic nanoreactor for self-boosting Fenton-like chemodynamic therapy, Nanoscale, 12, 17319, 10.1039/D0NR03135F
Dai, 2020, Eliciting immunogenic cell death via a unitized nanoinducer, Nano Lett., 20, 6246, 10.1021/acs.nanolett.0c00713
Yang, 2018, Hybrid nanoreactors: enabling an off-the-shelf strategy for concurrently enhanced chemo-immunotherapy, Angew. Chem. Int. Ed. Eng., 130, 11938, 10.1002/ange.201807595
Liu, 2020, Chem. Eng. J.
Wang, 2021, Natl. Sci. Rev., 0, nwaa268, 10.1093/nsr/nwaa268
Wu, 2015, Large-pore ultrasmall mesoporous organosilica nanoparticles: micelle/precursor co-templating assembly and nuclear-targeted gene delivery, Adv. Mater., 27, 215, 10.1002/adma.201404256
Sun, 2017, Core-shell hierarchical mesostructured silica nanoparticles for gene/chemo-synergetic stepwise therapy of multidrug-resistant cancer, Biomaterials, 133, 219, 10.1016/j.biomaterials.2017.04.028
Zhang, 2017, Biodegradable and biocompatible monodispersed hollow mesoporous organosilica with large pores for delivering biomacromolecules, J. Mater. Chem. B, 5, 8013, 10.1039/C7TB01526G
Yang, 2015, Biphasic synthesis of large-pore and well-dispersed benzene bridged mesoporous organosilica nanoparticles for intracellular protein delivery, Small, 11, 2743, 10.1002/smll.201402779
Shen, 2014, Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres, Nano Lett., 14, 923, 10.1021/nl404316v
Guo, 2020, Design of dendritic large-pore mesoporous silica nanoparticles with controlled structure and formation mechanism in dual-templating strategy, ACS Appl. Mater. Interfaces, 12, 18823, 10.1021/acsami.0c00596
Mauriello Jimenez, 2018, Porous porphyrin-based organosilica nanoparticles for NIR two-photon photodynamic therapy and gene delivery in zebrafish, Adv. Funct. Mater., 28
Ekineker, 2019, Phthalocyanine-based mesoporous organosilica nanoparticles: NIR photodynamic efficiency and siRNA photochemical internalization, Chem. Commun., 55, 11619, 10.1039/C9CC05703J
Qu, 2015, Silica microspheres with fibrous shells: synthesis and application in HPLC, Anal. Chem., 87, 9631, 10.1021/acs.analchem.5b02511
Munaweera, 2016, Chemically powered nanomotor as a delivery vehicle for biologically relevant payloads, J. Nanosci. Nanotechnol., 16, 9063, 10.1166/jnn.2016.12904
Peng, 2013, One-pot synthesis of benzamide over a robust tandem catalyst based on center radially fibrous silica encapsulated TS-1, Chem. Commun. (Camb. ), 49, 2709, 10.1039/c3cc38546a
Du, 2017, Dendritic porous yolk@ordered mesoporous shell structured heterogeneous nanocatalysts with enhanced stability, J. Mater. Chem. A, 5, 21560, 10.1039/C7TA07271F
Moon, 2014, Formation of wrinkled silica mesostructures based on the phase behavior of pseudoternary systems, Langmuir, 30, 15574, 10.1021/la504207k