Dendritic cell regulation of TH1-TH2 development

Nature Immunology - Tập 1 Số 3 - Trang 199-205 - 2000
Muriel Moser1, Kenneth M. Murphy2
1Département de Biologie Moleculaire, Université Libre de Bruxelles, Rue des Prof. Jeener et Brochet 12, 6041 Gosselies, Belgium.
2Department of Pathology & Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zinkernagel, R. M. et al. Antigen localization regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol. Rev. 156, 199–209 (1997).

Austyn, J. M. New insights into the mobilization and phagocytic activity of dendritic cells. J. Exp. Med. 183, 1287–1292 (1996).

Barratt-Boyes, S. M., Watkins, S. C. & Finn, O. J. Migration of cultured chimpanzee dendritic cells following intravenous and subcutaneous injection. Adv. Exp. Med. Biol. 417, 71–75 (1997).

Kupiec-Weglinski, J. W., Austyn, J. M. & Morris, P. J. Migration patterns of dendritic cells in the mouse. Traffic from the blood, and T cell-dependent and -independent entry to lymphoid tissues. J. Exp. Med. 167, 632–645 (1988).

De Smedt, T. et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med. 184, 1413–1424 (1996).

Cumberbatch, M., Dearman, R. J. & Kimber, I. Interleukin 1 β and the stimulation of Langerhans cell migration: comparisons with tumour necrosis factor α. Arch. Dermatol. Res. 289, 277–284 (1997).

Cumberbatch, M., Dearman, R. J. & Kimber, I. Langerhans cells require signals from both tumor necrosis factor-α and interleukin-1 β for migration. Immunology 92, 388–395 (1997).

Dieu, M. C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188, 373–386 (1998).

Cyster, J. G. Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. J. Exp. Med. 189, 447–450 (1999).

Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388, 782–787 (1997).

Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388, 787–792 (1997).

Inaba, K. et al. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med. 191, 927–936 (2000).

Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

Iezzi, G., Scotet, E., Scheidegger, D. & Lanzavecchia, A. The interplay between the duration of TCR and cytokine signaling determines T cell polarization. Eur. J. Immunol. 29, 4092–4101 (1999).

Reis e Sousa, C. et al. Paralysis of dendritic cell IL-12 production by microbial products prevents infection-induced immunopathology. Immunity 11, 637–647 (1999).

Winzler, C. et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med. 185, 317–328 (1997).

De Smedt, T. et al. Antigen-specific T lymphocytes regulate lipopolysaccharide-induced apoptosis of dendritic cells in vivo. J. Immunol. 161, 4476–4479 (1998).

Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

Wong, B. R. et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med. 186, 2075–2080 (1997).

Vremec, D. et al. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J. Exp. Med. 176, 47–58 (1992).

Inaba, K. et al. High levels of a major histocompatibility complex II-self peptide complex on dendritic cells from the T cell areas of lymph nodes. J. Exp. Med. 186, 665–672 (1997).

Liu, L., Zhang, M., Jenkins, C. & MacPherson, G. G. Dendritic cell heterogeneity in vivo : two functionally different dendritic cell populations in rat intestinal lymph can be distinguished by CD4 expression. J. Immunol. 161, 1146–1155 (1998).

Howard, C. J. et al. Identification of two distinct populations of dendritic cells in afferent lymph that vary in their ability to stimulate T cells. J. Immunol. 159, 5372–5382 (1997).

Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185, 1101–1111 (1997).

Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

Vremec, D. et al. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164, 2978–2986 (2000).

Salomon, B., Cohen, J. L., Masurier, C. & Klatzmann, D. Three populations of mouse lymph node dendritic cells with different origins and dynamics. J. Immunol. 160, 708–717 (1998).

Wu, L. et al. RelB is essential for the development of myeloid-related CD8α− dendritic cells but not of lymphoid-related CD8α+ dendritic cells. Immunity 9, 839–847 (1998).

Wu, L., Li, C. L. & Shortman, K. Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J. Exp. Med. 184, 903–911 (1996).

Radtke, F. et al. Notch1 deficiency dissociates the intrathymic development of dendritic cells and T cells. J. Exp. Med. 191, 1085–1093 (2000).

Suss, G. & Shortman, K. A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. J. Exp. Med. 183, 1789–1796 (1996).

Kronin, V. et al. A subclass of dendritic cells regulates the response of naive CD8 T cells by limiting their IL-2 production. J. Immunol. 157, 3819–3827 (1996).

Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl Acad. Sci. USA 96, 1036–1041 (1999).

Maldonado-Lopez, R. et al. CD8α+ and CD8α− subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189, 587–592 (1999).

Maldonado-Lopez, R. et al. Role of CD8α+ and CD8α− dendritic cells in the induction of primary immune responses in vivo. J. Leuk. Biol. 66, 242–246 (1999).

Kalinski, P., Hilkens, C. M., Wierenga, E. A. & Kapsenberg, M. L. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today 20, 561–567 (1999).

Kapsenberg, M. L. & Kalinski, P. The concept of type 1 and type 2 antigen-presenting cells. Immunol. Lett. 69, 5–6 (1999).

Kapsenberg, M. L., Hilkens, C. M., Wierenga, E. A. & Kalinski, P. The role of antigen-presenting cells in the regulation of allergen-specific T cell responses. Curr. Opin. Immunol. 10, 607–613 (1998).

Pulendran, B. et al. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J. Immunol. 159, 2222–2231 (1997).

O'Connell, P., Logar, A. J., Morelli, A. E. & Thomas, A. W. Comparative studies on hepatic myeloid and lymphoid DC. 6th Int. Symp. Dendritic Cells 62 (2000). [Abstr.]

Fazekas de St Groth, B. The evolution of self-tolerance: a new cell arises to meet the challenge of self-reactivity. Immunol. Today 19, 448–454 (1998).

Reis e Sousa, C. & Germain, R. N. Analysis of adjuvant function by direct visualization of antigen presentation in vivo: endotoxin promotes accumulation of antigen-bearing dendritic cells in the T cell areas of lymphoid tissue. J. Immunol. 162, 6552–6561 (1999).

Anjuere, F. et al. Definition of dendritic cell subpopulations present in the spleen, Peyer's patches, lymph nodes, and skin of the mouse. Blood 93, 590–598 (1999).

Merad, M., Engleman, E.G. & Fong, L. Migratory Myeloid DC express CD8α antigen in peripheral lymphoid organs. 6th Int. Symp. Dendritic Cells 72 (2000). [Abstr.]

Macatonia, S. E. et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J. Immunol. 154, 5071–5079 (1995).

Koch, F. et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J. Exp. Med. 184, 741–746 (1996). [Published Erratum appears in J. Exp. Med. 184, 1590 (1996).]

Kalinski, P., Schuitemaker, J. H., Hilkens, C. M., Wierenga, E. A. & Kapsenberg, M. L. Final maturation of dendritic cells is associated with impaired responsiveness to IFN-γ and to bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells. J. Immunol. 162, 3231–3236 (1999).

Snijders, A., Kalinski, P., Hilkens, C. M. & Kapsenberg, M. L. High-level IL-12 production by human dendritic cells requires two signals. Int. Immunol. 10, 1593–1598 (1998).

Vieira, P. L., de Jong, E. C., Wierenga, E. A., Kapsenberg, M. L. & Kalinski, P. Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction. J. Immunol. 164, 4507–4512 (2000).

Macatonia, S. E., Hsieh, C. S., Murphy, K. M. & O'Garra, A. Dendritic cells and macrophages are required for Th1 development of CD4+ T cells from αβ TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN-γ production is IFN—-dependent. Int. Immunol. 5, 1119–1128 (1993).

Hsieh, C. S. et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

Reis e Sousa, C. et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186, 1819–1829 (1997).

Aliberti, J. et al. CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells. Nature Immunol. 1, 83–87 (2000).

Hochrein, H. et al. Interleukin-4 is a major regulatory cytokine governing bioactive interleukin-12 prudction by mouse and human dendritic cells. J. Exp. Med. (in the press, 2000).

Kalinski, P. et al. IL-4 is a mediator of IL-12p70 induction by human Th2 cells: reversal of polarized Th2 phenotype by dendritic cells. J. Immunol. 165, 1877–1881 (2000).

De Becker, G. et al. Regulation of T helper cell differentiation in vivo by soluble and membrane proteins provided by antigen-presenting cells. Eur. J. Immunol. 28, 3161–3171 (1998).

O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275–283 (1998).

Siegal, F. P. et al. The Nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

Cho, S. S. et al. Activation of STAT4 by IL-12 and IFN-α: evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J. Immunol. 157, 4781–4789 (1996).

Rogge, L. et al. The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J. Immunol. 161, 6567–6574 (1998).

Farrar, J. D., Smith, J. D., Murphy, T. L. & Murphy, K. M. Recruitment of Stat4 to the Human Interferon-α/β Receptor Requires Activated Stat2. J. Biol. Chem. 275, 2693–2697 (2000).

Farrar, J. D. et al. Selective loss of type I interferon-induced STAT4 activation caused by a minisatellite insertion in mouse STAT2. Nature Immunol. 1, 65–69 (2000).

Kadowoki, N. et al. Natural interferon α/β-producing cells link innate and adaptive immunity. J. Exp. Med. 192 (in the press, 2000).

Jacobson, N. G. et al. Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J. Exp. Med. 181, 1755–1762 (1995).

Thierfelder, W. E. et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382, 171–174 (1996).

Kaplan, M. H., Sun, Y. L., Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174–177 (1996).

Wu, C., Ferrante, J., Gately, M. K. & Magram, J. Characterization of IL-12 receptor β1 chain (IL-12Rβ1)-deficient mice: IL-12Rβ1 is an essential component of the functional mouse IL-12 receptor. J. Immunol. 159, 1658–1665 (1997).

Xu, X., Sun, Y. L. & Hoey, T. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 273, 794–797 (1996).

Robinson, D. et al. IGIF does not drive Th1 development but synergizes with IL-12 for interferon-γ production and activates IRAK and NFκB. Immunity 7, 571–581 (1997).

Yang, J., Murphy, T. L., Ouyang, W. & Murphy, K. M. Induction of interferon-γ production in Th1 CD4+ T cells: evidence for two distinct pathways for promoter activation. Eur. J. Immunol. 29, 548–555 (1999).

Ouyang, W. et al. The Ets transcription factor ERM is Th1-specific and induced by IL-12 through a Stat4-dependent pathway. Proc. Natl Acad. Sci. USA 96, 3888–3893 (1999).

Carter, L. L. & Murphy, K. M. Lineage-specific requirement for signal transducer and activator of transcription (Stat)4 in interferon γ production from CD4(+) versus CD8(+) T cells. J. Exp. Med. 189, 1355–1360 (1999).

Kaplan, M. H., Wurster, A. L. & Grusby, M. J. A signal transducer and activator of transcription (Stat)4-independent pathway for the development of T helper type 1 cells. J. Exp. Med. 188, 1191–1196 (1998).

Frucht, D. M. et al. Stat4 is expressed in activated peripheral blood monocytes, dendritic cells, and macrophages at sites of Th1-mediated inflammation. J. Immunol. 164, 4659–4664 (2000).

Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

Gourley, T. et al. A novel role for the major histocompatibility complex class II transactivator CIITA in the repression of IL-4 production. Immunity 10, 377–386 (1999).

Rincon, M. et al. Interferon-γ expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway. EMBO J. 17, 2817–2829 (1998).

Yang, D. D. et al. Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity 9, 575–585 (1998).

Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science 282, 2092–2095 (1998).

Lu, H. T. et al. Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J. 18, 1845–1857 (1999).

Taki, S. et al. Multistage regulation of Th1-type immune responses by the transcription factor IRF-1. Immunity 6, 673–679 (1997).

Lohoff, M. et al. Interferon regulatory factor-1 is required for a T helper 1 immune response in vivo. Immunity 6, 681–689 (1997).

Coccia, E. M. et al. Interleukin-12 induces expression of interferon regulatory factor-1 via signal transducer and activator of transcription-4 in human T helper type 1 cells. J. Biol. Chem. 274, 6698–6703 (1999).

Wenner, C. A., Guler, M. L., Macatonia, S. E., O'Garra, A. & Murphy, K. M. Roles of IFN-γ and IFN-α in IL-12-induced T helper cell-1 development. J. Immunol. 156, 1442–1447 (1996).

Parronchi, P. et al. IL-4 and IFN (α and β) exert opposite regulatory effects on the development of cytolytic potential by Th1 or Th2 human T cell clones. J. Immunol. 149, 2977–2983 (1992).

Rogge, L. et al. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J. Exp. Med. 185, 825–831 (1997).

Bacon, C. M. et al. Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc. Natl Acad. Sci. USA 92, 7307–7311 (1995).

Uze, G., Lutfalla, G. & Gresser, I. Genetic transfer of a functional human interferon α receptor into mouse cells: cloning and expression of its cDNA. Cell 60, 225–234 (1990).

Cook, J. R., Cleary, C. M., Mariano, T. M., Izotova, L. & Pestka, S. Differential responsiveness of a splice variant of the human type I interferon receptor to interferons. J. Biol. Chem. 271, 13448–13453 (1996).

Novick, D., Cohen, B. & Rubinstein, M. The human interferon α/β receptor: characterization and molecular cloning. Cell 77, 391–400 (1994).

Soh, J. et al. Expression of a functional human type I interferon receptor in hamster cells: application of functional yeast artificial chromosome (YAC) screening. J. Biol. Chem. 269, 18102–18110 (1994).

Colamonici, O. R. & Domanski, P. Identification of a novel subunit of the type I interferon receptor localized to human chromosome 21. J. Biol. Chem. 268, 10895–10899 (1993).

Kim, S. H., Cohen, B., Novick, D. & Rubinstein, M. Mammalian type I interferon receptors consists of two subunits: IFNaR1 and IFNaR2. Gene 196, 279–286 (1997).

Owczarek, C. M. et al. Cloning and characterization of soluble and transmembrane isoforms of a novel component of the murine type I interferon receptor, IFNAR 2. J. Biol. Chem. 272, 23865–23870 (1997).

Domanski, P. et al. A region of the β subunit of the interferon α receptor different from box 1 interacts with Jak1 and is sufficient to activate the Jak-Stat pathway and induce an antiviral state. J. Biol. Chem. 272, 26388–26393 (1997).

Colamonici, O. et al. Direct binding to and tyrosine phosphorylation of the α subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol. Cell. Biol. 14, 8133–8142 (1994).

Yan, H., Krishnan, K., Lim, J. T., Contillo, L. G. & Krolewski, J. J. Molecular characterization of an α interferon receptor 1 subunit (IFNαR1) domain required for TYK2 binding and signal transduction. Mol. Cell. Biol. 16, 2074–2082 (1996).

Abramovich, C. et al. Differential tyrosine phosphorylation of the IFNAR chain of the type I interferon receptor and of an associated surface protein in response to IFN-α and IFN-β. EMBO J. 13, 5871–5877 (1994).

Yan, H. et al. Phosphorylated interferon-α receptor 1 subunit (IFNαR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein. EMBO J. 15, 1064–1074 (1996).

Leung, S., Qureshi, S. A., Kerr, I. M. & Darnell, J. E. Jr & Stark, G. R. Role of STAT2 in the α interferon signaling pathway. Mol. Cell. Biol. 15, 1312–1317 (1995).

Qureshi, S. A., Leung, S., Kerr, I. M., Stark, G. R. & Darnell, J. E., Jr Function of Stat2 protein in transcriptional activation by α interferon. Mol. Cell. Biol. 16, 288–293 (1996).

Yang, C. H. et al. Direct association of STAT3 with the IFNAR-1 chain of the human type I interferon receptor. J. Biol. Chem. 271, 8057–8061 (1996).

Pfeffer, L. M. et al. STAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science 276, 1418–1420 (1997).

Santini, S. M. et al. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro an in Hu-PBL-SCID mice. J. Exp. Med. 191, 1777–1788 (2000).

Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Medicine 5, 919–923 (1999).

Burstein, H. J., Shea, C. M. & Abbas, A. K. Aqueous antigens induce in vivo tolerance selectively in IL-2- and IFN—-producing (Th1) cells. J. Immunol. 148, 3687–3691 (1992).

De Wit, D. et al. The injection of deaggregated γ globulins in adult mice induces antigen-specific unresponsiveness of T helper type 1 but not type 2 lymphocytes. J. Exp. Med. 175, 9–14 (1992).

Rincon, M., Anguita, J., Nakamura, T., Fikrig, E. & Flavell, R. A. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J. Exp. Med. 185, 461–469 (1997).

Schmitz, J. et al. Induction of interleukin 4 (IL-4) expression in T helper (Th) cells is not dependent on IL-4 from non-Th cells. J. Exp. Med. 179, 1349–1353 (1994).

Ranger, A. M., Das, M. P., Kuchroo, V. K. & Glimcher, L. H. B7–2 (CD86) is essential for the development of IL-4-producing T cells. Int. Immunol. 8, 1549–1560 (1996).

Freeman, G. J. et al. B7-1 and B7–2 do not deliver identical costimulatory signals, since B7-2 but not B7-1 preferentially costimulates the initial production of IL-4. Immunity 2, 523–532 (1995).

Coffman, R. L. & Reiner, S. L. Instruction, selection, or tampering with the odds? Science 284, 1283 (1999).

Hollander, G. A. et al. Monoallelic expression of the interleukin-2 locus. Science 279, 2118–2121 (1998).

Bix, M. & Locksley, R. M. Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells. Science 281, 1352–1354 (1998).

Naramura, M., Hu, R. J. & Gu, H. Mice with a fluorescent marker for interleukin 2 gene activation. Immunity 9, 209–216 (1998).

Riviere, I., Sunshine, M. J. & Littman, D. R. Regulation of IL-4 expression by activation of individual alleles. Immunity 9, 217–228 (1998).

Bird, J. J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

Gett, A. V. & Hodgkin, P. D. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl Acad. Sci. USA 95, 9488–9493 (1998).

Richter, A., Lohning, M. & Radbruch, A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell cycle progression. J. Exp. Med. 190, 1439–1450 (1999).

Finkelman, F. D. et al. Stat6 regulation of in vivo IL-4 responses. J. Immunol. 164, 2303–2310 (2000).

Jankovic, D. et al. Single cell analysis reveals that IL-4 receptor/Stat6 signaling is not required for the in vivo or in vitro development of CD4(+) lymphocytes with a Th2 cytokine profile. J. Immunol. 164, 3047–3055 (2000).

Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27–37 (2000).

Rodriguez-Palmero, M., Hara, T., Thumbs, A. & Hunig, T. Triggering of T cell proliferation through CD28 induces GATA-3 and promotes T helper type 2 differentiation in vitro and in vivo. Eur. J. Immunol. 29, 3914–3924 (1999).

Ouyang, W. et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755 (1998).