Hệ thống phân phối thuốc dựa trên dendrimer: lịch sử, thách thức và những phát triển mới nhất
Tóm tắt
Kể từ khi dendrimer đầu tiên được báo cáo vào năm 1978 bởi Fritz Vögtle, nghiên cứu về dendrimer đã phát triển mạnh mẽ, từ tổng hợp đến ứng dụng trong bốn thập kỷ qua. Các đặc điểm cấu trúc riêng biệt của dendrimer bao gồm kích thước nano, bề mặt đa chức năng, nhánh cao, cấu trúc rỗng bên trong, và nhiều đặc điểm khác, làm cho dendrimer trở thành những phương tiện phân phối thuốc lý tưởng. Bài viết tổng quan ngắn này cung cấp một cái nhìn tổng quan về lịch sử và tính chất của dendrimer cũng như những phát triển mới nhất về dendrimer với vai trò là hệ thống phân phối thuốc. Bài viết tập trung vào những tiến bộ gần đây trong các ứng dụng của dendrimer như các chất mang thuốc và gen, bao gồm 1) chiến lược giải phóng thuốc chủ động để phân giải thuốc/ gen từ dendrimer đáp ứng với kích thích; 2) hệ thống phân phối dendrimer thay đổi kích thước và đảo ngược điện tích có thể tận dụng tốt hơn kích thước và tính chất bề mặt của dendrimer; 3) hệ thống phân phối gel dendrimer khối lượng và vi mô/nano. Những tiến bộ gần đây trong công thức dendrimer có thể dẫn đến việc tạo ra các sản phẩm thuốc và gen mới cũng như cho phép phát triển các liệu pháp phối hợp mới.
Từ khóa
#dendrimers #drug delivery #gene carriers #drug release strategies #formulation advancementsTài liệu tham khảo
Vögtle F, Richardt G, Werner N. Introduction. In: Vögtle F, Richardt G, Werner N, editors. Dendrimer chemistry: concepts, syntheses, properties, applications. Wiley: Academic; 2009. p. 1–24.
Buhleier E, Wehner W, Vögtle F. “Cascade”- and “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis. 1978;9:155–8.
Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17:117–32.
Tomalia DA, Fréchet JMJ. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci A Polym Chem. 2002;40:2719–28.
Liko F, Hindré F, Fernandez-Megia E. Dendrimers as innovative radiopharmaceuticals in cancer radionanotherapy. Biomacromol. 2016;17:3103–14.
Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: a tutorial. Chem Soc Rev. 2011;40:173–90.
Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem Rev. 2009;109:6275–540.
Wang D, Astruc D. Dendritic catalysis—basic concepts and recent trends. Coord Chem Rev. 2013;257:2317–34.
Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today. 2001;6:427–36.
Idris AO, Mamba B, Feleni U. Poly (propylene imine) dendrimer: a potential nanomaterial for electrochemical application. Mater Chem Phys. 2020;244: 122641.
Caminade A-M, Majoral J-P. Nanomaterials based on phosphorus dendrimers. Acc Chem Res. 2004;37:341–8.
de Brabander van den Berg EMM, Meijer EW. Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem Int Ed Engl. 1993;32:1308–11.
Robert G. Denkewalter, Jaroslav Kolc, Lukasavage WJ. Macromolecular highly branched homogenerous compound based on lysine units. United States Patent, 4,289,872, Sep.15, 1981.
Gillies ER, Fréchet JMJ. Designing macromolecules for therapeutic applications: polyester dendrimer poly(ethylene oxide) “Bow-Tie” hybrids with tunable molecular weight and architecture. J Am Chem Soc. 2002;124:14137–46.
Launay N, Caminade A-M, Lahana R, Majoral J-P. A general synthetic strategy for neutral phosphorus-containing dendrimers. Angew Chem Int Ed Engl. 1994;33:1589–92.
Arseneault M, Wafer C, Morin JF. Recent advances in click chemistry applied to dendrimer synthesis. Molecules. 2015;20:9263–94.
Deng X-X, Du F-S, Li Z-C. Combination of orthogonal ABB and ABC multicomponent reactions toward efficient divergent synthesis of dendrimers with structural diversity. ACS Macro Lett. 2014;3:667–70.
Fan X, Hu Z, Wang G. Facile synthesis of polyester dendrimer via combining thio-bromo “Click” chemistry and ATNRC. J Polym Sci A Polym Chem. 2015;53:1762–8.
Jee J-A, Spagnuolo LA, Rudick JG. Convergent synthesis of dendrimers via the passerini three-component reaction. Org Lett. 2012;14:3292–5.
Tomalia DA, Hedstrand DM, Ferritto MS. Comb-burst dendrimer topology: new macromolecular architecture derived from dendritic grafting. Macromolecules. 1991;24:1435–8.
Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9:247.
Shi X, Majoros IJ, Baker JR. Capillary electrophoresis of poly(amidoamine) dendrimers: from simple derivatives to complex multifunctional medical nanodevices. Mol Pharm. 2005;2:278–94.
Bosman AW, Janssen HM, Meijer EW. About dendrimers: structure, physical properties, and applications. Chem Rev. 1999;99:1665–88.
Jackson CL, Chanzy HD, Booy FP, Drake BJ, Tomalia DA, Bauer BJ, Amis EJ. Visualization of dendrimer molecules by transmission electron microscopy (TEM): staining methods and cryo-TEM of vitrified solutions. Macromolecules. 1998;31:6259–65.
Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today. 2010;15:171–85.
Rao BN, Viswanath V, Reddy KR, Fathima SR, Surekha P, Bhuvaneswari S. Dendrimers–structure, synthesis, encapsulation, characterization and application. J Global Trends Pharm Sci. 2015;6:2860–6.
Parekh HS. The advance of dendrimers–a versatile targeting platform for gene/drug delivery. Curr Pharm Design. 2007;13:2837–50.
Kurtoglu YE, Mishra MK, Kannan S, Kannan RM. Drug release characteristics of PAMAM dendrimer–drug conjugates with different linkers. Int J Pharm. 2010;384:189–94.
Liu J, Gray WD, Davis ME, Luo Y. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus. 2012;2:307–24.
Yang H, Morris JJ, Lopina ST. Polyethylene glycol–polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. J Colloid Interface Sci. 2004;273:148–54.
Pooresmaeil M, Namazi H. Advances in development of the dendrimers having natural saccharides in their structure for efficient and controlled drug delivery applications. Eur Polym J. 2021;148: 110356.
Agrawal P, Gupta U, Jain NK. Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials. 2007;28:3349–59.
Sharma AK, Gupta L, Sahu H, Qayum A, Singh SK, Nakhate KT, et al. Chitosan engineered PAMAM dendrimers as nanoconstructs for the enhanced anti-cancer potential and improved in vivo brain pharmacokinetics of temozolomide. Pharm Res. 2018;35:9.
Han M, Huang-Fu M-Y, Guo W-W, Guo N-N, Chen J, Liu H-N, et al. MMP-2-Sensitive HA end-conjugated poly(amidoamine) dendrimers via click reaction to enhance drug penetration into solid tumor. ACS Appl Mater Interfaces. 2017;9:42459–70.
Arima H, Motoyama K, Higashi T. Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors. Adv Drug Deliv Rev. 2013;65:1204–14.
Agarwal A, Gupta U, Asthana A, Jain NK. Dextran conjugated dendritic nanoconstructs as potential vectors for anti-cancer agent. Biomaterials. 2009;30:3588–96.
He H, Yuan Q, Bie J, Wallace RL, Yannie PJ, Wang J, et al. Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis. Transl Res. 2018;193:13–30.
Kolhe P, Khandare J, Pillai O, Kannan S, Lieh-Lai M, Kannan RM. Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials. 2006;27:660–9.
Lancina MG, Wang J, Williamson GS, Yang H. DenTimol as a dendrimeric timolol analogue for glaucoma therapy: synthesis and preliminary efficacy and safety assessment. Mol Pharm. 2018;15:2883–9.
Wang G, Zhou Z, Zhao Z, Li Q, Wu Y, Yan S, et al. Enzyme-triggered transcytosis of dendrimer–drug conjugate for deep penetration into pancreatic tumors. ACS Nano. 2020;14:4890–904.
Jiang W, Luo X, Wei L, Yuan S, Cai J, Jiang X, et al. The sustainability of energy conversion inhibition for tumor ferroptosis therapy and chemotherapy. Small. 2021;17:2102695.
Liu H, Wang H, Yang W, Cheng Y. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J Am Chem Soc. 2012;134:17680–7.
Shen Y, Zhou Z, Sui M, Tang J, Xu P, Kirk EAV, et al. Charge-reversal polyamidoamine dendrimer for cascade nuclear drug delivery. Nanomedicine. 2010;5:1205–17.
Pang X, Jiang Y, Xiao Q, Leung AW, Hua H, Xu C. pH-Responsive polymer–drug conjugates: design and progress. J Control Release. 2016;222:116–29.
Wang J, He H, Cooper RC, Gui Q, Yang H. Drug-conjugated dendrimer hydrogel enables sustained drug release via a self-cleaving mechanism. Mol Pharm. 2019;16:1874–80.
Milhem OM, Myles C, McKeown NB, Attwood D, D’Emanuele A. Polyamidoamine Starburst® dendrimers as solubility enhancers. Int J Pharm. 2000;197:239–41.
Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Delivery Rev. 2005;57:2177–202.
Surekha B, Kommana NS, Dubey SK, Kumar AVP, Shukla R, Kesharwani P. PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids Surface B. 2021;204: 111837.
Choi YJ, Kang SJ, Kim YJ, Lim YB, Chung HW. Comparative studies on the genotoxicity and cytotoxicity of polymeric gene carriers polyethylenimine (PEI) and polyamidoamine (PAMAM) dendrimer in Jurkat T-cells. Drug Chem Toxicol. 2010;33:357–66.
Zhang J, Liu D, Zhang M, Sun Y, Zhang X, Guan G, et al. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells. Int J Nanomed. 2016;11:3677–90.
Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today. 2018;12:177–90.
Xu L, Yeudall WA, Yang H. Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: Its utility for local siRNA delivery. Acta Biomater. 2017;57:251–61.
Chaplot SP, Rupenthal ID. Dendrimers for gene delivery–a potential approach for ocular therapy? J Pharm Pharmacol. 2013;66:542–56.
Cooper RC, Yang H. Duplex of polyamidoamine dendrimer/custom-designed nuclear-localization sequence peptide for enhanced gene delivery. Bioelectricity. 2020;2:150–7.
Al-Jamal KT, Al-Jamal WT, Kostarelos K, Turton JA, Florence AT. Anti-angiogenic poly-L-lysine dendrimer binds heparin and neutralizes its activity. Results Pharma Sci. 2012;2:9–15.
Kannan RM, Nance E, Kannan S, Tomalia DA. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med. 2014;276:579–617.
Yang H. Targeted nanosystems: advances in targeted dendrimers for cancer therapy. Nanomedicine. 2016;12:309–16.
Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioall Sci. 2014;6:139–50.
Sonawane ND, Szoka FC, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem. 2003;278:44826–31.
Kesharwani P, Banerjee S, Gupta U, Amin MCIM, Padhye S, Sarkar FH, et al. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater Today. 2015;18:565–72.
Zhou L, Gan L, Li H, Yang X. Studies on the interactions between DNA and PAMAM with fluorescent probe [Ru(phen)2d ppz]2+. J Pharmaceut Biomed. 2007;43:330–4.
Thiagarajan G, Greish K, Ghandehari H. Charge affects the oral toxicity of poly(amidoamine) dendrimers. Eur J Pharm Biopharm. 2013;84:330–4.
Chauhan AS, Jain NK, Diwan PV. Pre-clinical and behavioural toxicity profile of PAMAM dendrimers in mice. Proc R Soc A. 2010;466:1535–50.
de Araujo RV, Santos SS, Ferreira EI, Giarolla J. New advances in general biomedical applications of PAMAM dendrimers. Molecules. 2018;23:2849.
Pryor JB, Harper BJ, Harper SL. Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish. Int J Nanomedicine. 2014;9:1947–56.
Gao Y, Wang J, Chai M, Li X, Deng Y, Jin Q, et al. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management. ACS Nano. 2020;14:5686–99.
Wang K, Tu Y, Yao W, Zong Q, Xiao X, Yang R-M, et al. Size-switchable nanoparticles with self-destructive and tumor penetration characteristics for site-specific phototherapy of cancer. ACS Appl Mater Inter. 2020;12:6933–43.
Mohapatra A, Uthaman S, Park I-K. Polyethylene glycol nanoparticles as promising tools for anticancer therapeutics. In: Kesharwani P, Paknikar KM, Gajbhiye V, editors. Polymeric nanoparticles as a promising tool for anticancer therapeutics. Academic Press; 2019. p. 205–31.
Luong D, Kesharwani P, Deshmukh R, Amin MCIM, Gupta U, Greish K, et al. PEGylated PAMAM dendrimers: enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater. 2016;43:14–29.
Ho MN, Bach LG, Nguyen DH, Nguyen CH, Nguyen CK, Tran NQ, Nguyen NV, Thi TTH. PEGylated PAMAM dendrimers loading oxaliplatin with prolonged release and high payload without burst effect. Biopolymers. 2019;110(7):e23272.
Zhu S, Hong M, Zhang L, Tang G, Jiang Y, Pei Y. PEGylated PAMAM dendrimer-doxorubicin conjugates: in vitro evaluation and in vivo tumor accumulation. Pharm Res. 2009;27:162–74.
Yuan Q, Yeudall WA, Yang H. PEGylated polyamidoamine dendrimers with bis-aryl hydrazone linkages for enhanced gene delivery. Biomacromol. 2010;11:1940–7.
Longley CB, Zhao H, Lozanguiez YL, Conover CD. Biodistribution and excretion of radiolabeled 40 kDa polyethylene glycol following intravenous administration in mice. J Pharm Sci. 2013;102:2362–70.
Hu X, Olivier K, Polack E, Crossman M, Zokowski K, Gronke RS, et al. In vivo pharmacology and toxicology evaluation of polyethylene glycol-conjugated interferon β-1a. J Pharmacol Exp Ther. 2011;338:984–96.
Gokay SS, Celik T, Sari YM, Ekinci F, Yildizdas RD, Yilmaz HL. Urticaria as a rare side effect of polyethylene glycol-3350 in a child: case report. Acta Clin Croat. 2018;57:187–9.
Abu Lila AS, Kiwada H, Ishida T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J Control Release. 2013;172:38–47.
Im H-J, England CG, Feng L, Graves SA, Hernandez R, Nickles RJ, et al. Accelerated blood clearance phenomenon reduces the passive targeting of PEGylated nanoparticles in peripheral arterial disease. ACS Appl Mater Inter. 2016;8:17955–63.
Son K, Ueda M, Taguchi K, Maruyama T, Takeoka S, Ito Y. Evasion of the accelerated blood clearance phenomenon by polysarcosine coating of liposomes. J Control Release. 2020;322:209–16.
Waite CL, Sparks SM, Uhrich KE, Roth CM. Acetylation of PAMAM dendrimers for cellular delivery of siRNA. BMC Biotech. 2009;9:38.
Xiong Z, Shen M, Shi X. Zwitterionic Modification of nanomaterials for improved diagnosis of cancer cells. Bioconjugate Chem. 2019;30:2519–27.
Wang L, Shi C, Wang X, Guo D, Duncan TM, Luo J. Zwitterionic Janus dendrimer with distinct functional disparity for enhanced protein delivery. Biomaterials. 2019;215: 119233.
Wang G, Wu B, Li Q, Chen S, Jin X, Liu Y, et al. Active transportation of liposome enhances tumor accumulation, penetration, and therapeutic efficacy. Small. 2020;16:2004172.
Zhou Q, Shao S, Wang J, Xu C, Xiang J, Piao Y, et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat Nanotechnol. 2019;14:799–809.
Feng S, Zhang H, Zhi C, Gao XD, Nakanishi H. pH-Responsive charge-reversal polymer-functionalized boron nitride nanospheres for intracellular doxorubicin delivery. Int J Nanomed. 2018;13:641–52.
Hua Y, Chen L, Hou C, Liu S, Pei Z, Lu Y. Supramolecular vesicles based on amphiphilic pillar[n]arenes for smart nano-drug delivery. Int J Nanomed. 2020;15:5873–99.
Zhou Z, Shen Y, Tang J, Jin E, Ma X, Sun Q, et al. Linear polyethyleneimine-based charge-reversal nanoparticles for nuclear-targeted drug delivery. J Mater Chem. 2011;21:19114–23.
Liu X, Xiang J, Zhu D, Jiang L, Zhou Z, Tang J, et al. Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery. Adv Mater. 2016;28:1743–52.
Wang G, Zhu D, Zhou Z, Piao Y, Tang J, Shen Y. A glutathione-specific and intracellularly labile polymeric nanocarrier for efficient and safe cancer gene delivery. ACS Appl Mater Inter. 2020;12:14825–38.
Wang J, Cooper RC, Yang H. Polyamidoamine dendrimer grafted with an acid-responsive charge-reversal layer for improved gene delivery. Biomacromol. 2020;21:4008–16.
Wang J, Guo C, Wang X-Y, Yang H. “Double-punch” strategy for delivery of viral immunotherapy with prolonged tumor retention and enhanced transfection efficacy. J Control Release. 2021;329:328–36.
Ghobril C, Rodriguez EK, Nazarian A, Grinstaff MW. Recent advances in dendritic macromonomers for hydrogel formation and their medical applications. Biomacromol. 2016;17:1235–52.
Desai PN, Yuan Q, Yang H. Synthesis and characterization of photocurable polyamidoamine dendrimer hydrogels as a versatile platform for tissue engineering and drug delivery. Biomacromol. 2010;11:666–73.
Wang J, He H, Cooper RC, Yang H. In Situ-Forming Polyamidoamine dendrimer hydrogels with tunable properties prepared via aza-Michael addition reaction. ACS Appl Mater Inter. 2017;9:10494–503.
Cong H, Zhou L, Meng Q, Zhang Y, Yu B, Shen Y, et al. Preparation and evaluation of PAMAM dendrimer-based polymer gels physically cross-linked by hydrogen bonding. Biomater Sci. 2019;7:3918–25.
Cho IS, Ooya T. A Supramolecular hydrogel based on polyglycerol dendrimer-specific amino group recognition. Chem Asian J. 2018;13:1688–91.
Soiberman U, Kambhampati SP, Wu T, Mishra MK, Oh Y, Sharma R, et al. Subconjunctival injectable dendrimer-dexamethasone gel for the treatment of corneal inflammation. Biomaterials. 2017;125:38–53.
Xu L, Cooper RC, Wang J, Yeudall WA, Yang H. Synthesis and application of injectable bioorthogonal dendrimer hydrogels for local drug delivery. ACS Biomater Sci Eng. 2017;3:1641–53.
Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB. Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano. 2012;6:7595–606.
Wang J, Li B, Pu X, Wang X, Cooper RC, Gui Q, et al. Injectable multicomponent biomimetic gel composed of inter-crosslinked dendrimeric and mesoporous silica nanoparticles exhibits highly tunable elasticity and dual drug release capacity. ACS Appl Mater Inter. 2020;12:10202–10.
Wang J, Yang H. Superelastic and pH-responsive degradable dendrimer cryogels prepared by cryo-aza-Michael addition reaction. Sci Rep. 2018;8:7155.
Wang Y, Zhao Q, Zhang H, Yang S, Jia X. A novel poly(amido amine)-dendrimer-based hydrogel as a mimic for the extracellular matrix. Adv Mater. 2014;26:4163–7.
Cheng C-Y, Wang N, Wong TY, Congdon N, He M, Wang YX, et al. Prevalence and causes of vision loss in East Asia in 2015: magnitude, temporal trends and projections. Brit J Ophthalmol. 2020;104:616–22.
El Hoffy NM, Abdel Azim EA, Hathout RM, Fouly MA, Elkheshen SA. Glaucoma: management and future perspectives for nanotechnology-based treatment modalities. Eur J Pharm Sci. 2021;158: 105648.
Cooper RC, Yang H. Hydrogel-based ocular drug delivery systems: emerging fabrication strategies, applications, and bench-to-bedside manufacturing considerations. J Control Release. 2019;306:29–39.
Wang J, Williamson GS, Lancina MG III, Yang H. Mildly cross-linked dendrimer hydrogel prepared via aza-Michael addition reaction for topical brimonidine delivery. J Biomed Nanotechnol. 2017;13:1089–96.
Wang J, Cooper RC, He H, Li B, Yang H. Polyamidoamine dendrimer microgels: hierarchical arrangement of dendrimers into micrometer domains with expanded structural features for programmable drug delivery and release. Macromolecules. 2018;51:6111–8.