Demystifying traditional herbal medicine with modern approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
The Plant List (accessed 1 June 2017); http://www.theplantlist.org/
Weng, J.-K., Philippe, R. N. & Noel, J. P. The rise of chemodiversity in plants. Science 336, 1660–1677 (2012).
Hardy, K. et al. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99, 617–626 (2012).
Lietava, J. Medicinal plants in a Middle Paleolithic grave Shanidar IV? J. Ethnopharmacol. 35, 263–266 (1992).
Aboelsoud, N. H. Herbal medicine in ancient Egypt. J. Med. Plants Res. 4, 82–86 (2010).
Yang, S. The Divine Farmer's Materia Medica: A Translation of the Shen Nong Ben Cao Jing (Blue Poppy Press, 1998).
Patridge, E., Gareiss, P., Kinch, M. S. & Hoyer, D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov. Today 21, 204–207 (2015).
Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. & McPhail, A. T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325–2327 (1971).
Neuss, N., Gorman, M., Svoboda, G. H., Maciak, G. & Beer, C. T. Vinca alkaloids. III.1 Characterization of leurosine and vincaleukoblastine, new alkaloids from Vinca Rosea Linn. J. Am. Chem. Soc. 81, 4754–4755 (1959).
Kiyohara, H., Matsumoto, T. & Yamada, H. Combination effects of herbs in a multi-herbal formula: expression of Juzen-taiho-to's immuno-modulatory activity on the intestinal immune system. eCAM 1, 83–91 (2004).
Courtwright, D. T. Forces of Habit: Drugs and the Making of the Modern World (Harvard Univ. Press, 2001).
Manglik, A. et al. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012).
Vaughan, C. W., Ingram, S. L., Connor, M. A. & Christie, M. J. How opioids inhibit GABA-mediated neurotransmission. Nature 390, 611–614 (1997).
Snyder, J. P., Nettles, J. H., Cornett, B., Downing, K. H. & Nogales, E. The binding conformation of Taxol in β-tubulin: a model based on electron crystallographic density. Proc. Natl Acad. Sci. USA 98, 5312–5316 (2001).
Saville, M. W. et al. Treatment of HIV-associated Kaposi's sarcoma with paclitaxel. Lancet 346, 26–28 (1995).
Gigant, B. et al. Structural basis for the regulation of tubulin by vinblastine. Nature 435, 519–522 (2005).
Khoury, H. J. et al. Omacetaxine mepesuccinate in patients with advanced chronic myeloid leukemia with resistance or intolerance to tyrosine kinase inhibitors. Leuk. Lymphoma 56, 120–127 (2015).
Garreau de Loubresse, N. et al. Structural basis for the inhibition of the eukaryotic ribosome. Nature 513, 517–522 (2014).
Gandhi, V., Plunkett, W. & Cortes, J. E. Omacetaxine: a protein translation inhibitor for treatment of chronic myelogenous leukemia. Clin. Cancer Res. 20, 1735–1740 (2014).
Gu, Y. et al. Small-molecule induction of phospho-eIF4E sumoylation and degradation via targeting its phosphorylated serine 209 residue. Oncotarget 6, 15111–15121 (2015).
Staker, B. L. et al. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl Acad. Sci. USA 99, 15387–15392 (2002).
Damayanthi, Y. & Lown, J. W. Podophyllotoxins: current status and recent developments. Curr. Med. Chem. 5, 205–252 (1998).
Wu, C. C. et al. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science 333, 459–462 (2011).
Meng, Z. P. et al. Berbamine inhibits the growth of liver cancer cells and cancer-initiating cells by targeting Ca2+/calmodulin-dependent protein kinase II. Mol. Cancer Ther. 12, 2067–2077 (2013).
Gu, Y. et al. CaMKII γ, a critical regulator of CML stem/progenitor cells, is a target of the natural product berbamine. Blood 120, 4829–4839 (2012).
Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285–296 (2003).
Stickel, S. A., Gomes, N. P., Frederick, B., Raben, D. & Su, T. T. Bouvardin is a radiation modulator with a novel mechanism of action. Radiat. Res. 184, 392–403 (2015).
Zalacain, M., Zaera, E., Vazquez, D. & Jimenez, A. The mode of action of the antitumor drug bouvardin, an inhibitor of protein synthesis in eukaryotic cells. FEBS Lett. 148, 95–97 (1982).
Wink, M. Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules 17, 12771–12791 (2012).
Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med. 17, 1217–1220 (2011).
Wang, J. et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat. Commun. 6, 10111 (2015).
Wu, Y. et al. Therapeutic effects of the artemisinin analog SM934 on lupus-prone MRL/lpr mice via inhibition of TLR-triggered B-cell activation and plasma cell formation. Cell. Mol. Immunol. 13, 379–390 (2016).
Li, J. et al. Artemisinins target GABAA receptor signaling and impair α cell identity. Cell 168, 86–100 (2017).
Lai, H. C., Singh, N. P. & Sasaki, T. Development of artemisinin compounds for cancer treatment. Invest. New Drugs 31, 230–246 (2013).
Samochocki, M. et al. Galantamine is an allosterically potentiating ligand of neuronal nicotinic but not of muscarinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 305, 1024–1036 (2003).
Raves, M. L. et al. Structure of acetylcholinesterase complexed with the nootropic alkaloid, (–)-huperzine A. Nat. Struct. Biol. 4, 57–63 (1997).
Coleman, B. R. et al. [+]-Huperzine A treatment protects against N-methyl-d-aspartate-induced seizure/status epilepticus in rats. Chem. Biol. Interact. 175, 387–395 (2008).
Wang, H. et al. Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development. J. Biol. Chem. 281, 21469–21479 (2006).
Leung, D. Y. et al. Effect of anti-IgE therapy in patients with peanut allergy. N. Engl. J. Med. 348, 986–993 (2003).
Srivastava, K. D. et al. The Chinese herbal medicine formula FAHF-2 completely blocks anaphylactic reactions in a murine model of peanut allergy. J. Allergy Clin. Immunol. 115, 171–178 (2005).
Srivastava, K. D. et al. Food Allergy Herbal Formula-2 silences peanut-induced anaphylaxis for a prolonged posttreatment period via IFN-γ–producing CD8+ T cells. J. Allergy Clin. Immunol. 123, 443–451 (2009).
Kattan, J. D. et al. Pharmacological and immunological effects of individual herbs in the Food Allergy Herbal Formula-2 (FAHF-2) on peanut allergy. Phytother. Res. 22, 651–659 (2008).
Ehrlich, H. Food Allergies: Traditional Chinese Medicine, Western Science, and the Search for a Cure (Third Avenue Books, 2014).
Wen, M. C. et al. Efficacy and tolerability of anti-asthma herbal medicine intervention in adult patients with moderate-severe allergic asthma. J. Allergy Clin. Immunol. 116, 517–524 (2005).
Srivastava, K., Sampson, H. A., Emala, C. W. Sr & Li, X. M. The anti-asthma herbal medicine ASHMI acutely inhibits airway smooth muscle contraction via prostaglandin E2 activation of EP2/EP4 receptors. Am. J. Physiol. Lung Cell Mol. Physiol. 305, 1002–1010 (2013).
Srivastava, K. D., Sampson, H. A. & Li, X. The anti-asthma chinese herbal formula ASHMI provides more persistent benefits than dexamethasone in a murine asthma model. J. Allergy Clin. Immunol. 127, AB261 (2011).
Yang, N. et al. The Sophora flavescens flavonoid compound trifolirhizin inhibits acetylcholine induced airway smooth muscle contraction. Phytochemistry 95, 259–267 (2013).
Yang, N. et al. Glycyrrhiza uralensis flavonoids present in anti-asthma formula, ASHMI, inhibit memory Th2 responses in vitro and in vivo. Phytother. Res. 27, 1381–1391 (2013).
Liu, C. et al. Ganoderic acid C1 isolated from the anti-asthma formula, ASHMITM suppresses TNF-α production by mouse macrophages and peripheral blood mononuclear cells from asthma patients. Int. Immunopharmacol. 27, 224–231 (2015).
Lam, W. et al. PHY906(KD018), an adjuvant based on a 1800-year-old Chinese medicine, enhanced the anti-tumor activity of Sorafenib by changing the tumor microenvironment. Sci. Rep. 5, 9384 (2015).
Lam, W. et al. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci. Transl. Med. 2, 45ra59 (2010).
Chan, K. et al. Good practice in reviewing and publishing studies on herbal medicine, with special emphasis on traditional Chinese medicine and Chinese materia medica. J. Ethnopharmacol. 140, 469–475 (2012).
Luo, D. et al. Compound Danshen dripping pill for treating early diabetic retinopathy: a randomized, double-dummy, double-blind study. eCAM 2015, 539185 (2015).
Avanzas, P. & Kaski, J. C. Pharmacological Treatment of Chronic Stable Angina Pectoris (Springer, 2015).
Tagliaferri, M. A. et al. A phase IIb trial of coix seed injection for advanced pancreatic cancer. J. Clin. Oncol. 31, e16023 (2013).
Liu, C., Hu, Y., Xu, L., Liu, C. & Liu, P. Effect of Fuzheng Huayu formula and its actions against liver fibrosis. Chi. Med. 4, 12 (2009).
Szasz, T. Psychiatry and the control of dangerousness: on the apotropaic function of the term “mental illness”. J. Med. Ethics 29, 227–230 (2003).
Liu, J., Lee, J., Salazar Hernandez, M. A., Mazitschek, R. & Ozcan, U. Treatment of obesity with celastrol. Cell 161, 999–1011 (2015).
Lee, J. et al. Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice. Nat. Med. 22, 1023–1032 (2016).
Inokuma, Y. et al. X-ray analysis on the nanogram to microgram scale using porous complexes. Nature 495, 461–466 (2013).