Demosponge steroid biomarker 26-methylstigmastane provides evidence for Neoproterozoic animals

Nature Ecology and Evolution - Tập 2 Số 11 - Trang 1709-1714
J. Alex Zumberge1, Gordon D. Love1, Paco Cárdenas2, Erik A. Sperling3, Sunithi Gunasekera2, Megan Rohrssen4, Emmanuelle Grosjean5, J. P. Grotzinger6, Roger E. Summons7
1Department of Earth Sciences, University of California, Riverside, Riverside, CA, USA
2Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
3Department of Geological Sciences, Stanford University, Stanford, CA, USA
4Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, MI, USA
5Geoscience Australia, Canberra, Australian Capital Territory, Australia
6Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
7Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA,

Tóm tắt

Từ khóa


Tài liệu tham khảo

Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).

Love, G. D. et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718–721 (2009).

Simion, P. et al. Large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr. Biol. 27, 958–968 (2017).

McCaffrey, M. A. et al. Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochim. Cosmochim. Acta 58, 529–532 (1994).

Hofheinz, W. & Oesterhelt, G. 24-isopropylcholesterol and 22-dehydro-24-isopropylcholesterol, novel sterols from a sponge. Helv. Chim. Acta 62, 1307–1309 (1979).

Rooney, A. D., Strauss, J. V., Brandon, A. D. & Macdonald, F. A. A Cryogenian chronology: two long-lasting synchronous Neoproterozoic glaciations. Geology 43, 459–462 (2015).

Peters, K. E. et al. Recognition of an Infracambrian source rock based on biomarkers in the Baghewala-1 oil, India. AAPG Bull. 79, 1481–1494 (1995).

Grosjean, E. et al. Origin of petroleum in the Neoproterozoic–Cambrian South Oman Salt Basin. Org. Geochem. 40, 87–110 (2009).

Kelly, A. E., Love, G. D., Zumberge, J. E. & Summons, R. E. Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from Eastern Siberia. Org. Geochem. 42, 640–654 (2011).

Antcliffe, J. B. Questioning the evidence of organic compounds called sponge biomarkers. Palaeontology 56, 917–925 (2013).

Siegl, A. et al. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J. 5, 61–70 (2011).

Love, G. D. & Summons, R. E. The record of Cryogenian sponges. A response to Antcliffe. Palaeontology 58, 1131–1136 (2015).

Gold, D. A. et al. Sterol and genomic analyses validate the sponge biomarker hypothesis. Proc. Natl Acad. Sci. USA 113, 2684–2689 (2016).

Grabenstatter, J. et al. Identification of 24-n-proplidenecholesterol in a member of the Foraminefera. Org. Geochem. 63, 145–151 (2013).

Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).

dos Reis, M. et al. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr. Biol. 25, 2939–2950 (2015).

Dohrmann, M. & Wörheide, G. Dating early animal evolution using phylogenomic data. Sci. Rep. 7, 3599 (2017).

Schuster, A. et al. Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth–death clock model. BMC Evol. Biol. 18, 114 (2018).

Love, G. D. et al. An optimised catalytic hydropyrolysis method for the rapid screening of microbial cultures for lipid biomarkers. Org. Geochem. 36, 63–82 (2005).

Theobald, N. & Djerassi, C. Determination of the absolute configuration of stelliferasterol and strongylosterol—two marine sterols with ‘extended’ side chains. Tetrahedron Lett. 45, 4369–4372 (1978).

Theobald, N., Wells, R. J. & Djerassi, C. Minor and trace sterols in marine invertebrates. 8. Isolation, structure elucidation, and partial synthesis of two novel sterols—stelliferasterol and isostelliferasterol. J. Am. Chem. Soc. 100, 7677–7684 (1978).

Kennedy, J. A. Resolving the ‘Jaspis stellifera’ complex. Mem. Queensl. Mus. 45, 453–476 (2000).

Bortolloto, M., Braekman, J. C., Daloze, D. & Tursch, D. Chemical studies of marine invertebrates. XXXXVI. Strongylosterol, a novel C-30 sterol from the sponge Strongylophora durissima Dendy. Bull. Soc. Chim. Belg. 87, 539–543 (1978).

Vacelet, J. et al. Morphological, chemical and biochemical characterization of a new species of sponge without skeleton (Porifera, Demospongiae) from the Mediterranean Sea. Zoosytema 22, 313–326 (2000).

Volkman, J. K. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 60, 495–506 (2003).

Kodner, R. B., Pearson, A., Summons, R. E. & Knoll, A. H. Sterols in red and green algae: quantification, phylogeny, and relevance for the interpretation of geologic steranes. Geobiology 6, 411–420 (2008).

Blumenberg, M., Thiel, V., Pape, T. & Michaelis, W. The steroids of hexactinellid sponges. Naturwissenschaften 89, 415–419 (2002).

Hagemann, A., Voigt, O., Wörheide, G. & Thiel, V. The sterols of calcareous sponges (Calcarea, Porifera). Chem. Phys. Lipids 156, 26–32 (2008).

Brocks, J. J. et al. Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14, 129–149 (2015).

Adam, P., Schaeffer, P. & Brocks, J. J. Synthesis of 26-methylcholestane and identification of cryostane in mid-Neoproterozoic sediments. Org. Geochem. 115, 246–249 (2018).

Botting, J. P. & Muir, L. A. Early sponge evolution: a review and phylogenetic framework. Palaeoworld 27, 1–29 (2018).

Muscente, A. D., Marc Michel, F., Dale, J. G. & Xiao, S. Assessing the veracity of Precambrian ‘sponge’ fossils using in situ nanoscale analytical techniques. Precam. Res. 263, 142–156 (2015).

Berelson, W. M. et al. Anaerobic diagenesis of silica and carbon in continental margin sediments: discrete zones of TCO2 production. Geochim. Cosmochim. Acta 69, 4611–4629 (2005).

Whelan, N. V. et al. Ctenophore relationships and their placement as the sister group to all other animals. Nat. Ecol. Evol. 1, 1737–1746 (2017).

Rohrssen, M., Love, G. D., Fischer, W., Finnegan, S. & Fike, D. A. Lipid biomarkers record fundamental changes in the microbial community structure of tropical seas during the Late Ordovician Hirnantian glaciation. Geology 41, 127–130 (2013).

Rohrssen, M., Gill, B. C. & Love, G. D. Scarcity of the C30 sterane biomarker, 24-n-propylcholestane, in Lower Paleozoic marine paleoenvironments. Org. Geochem. 80, 1–7 (2015).

Haddad, E. E. et al. Lipid biomarker stratigraphic records through the Late Devonian Frasnian/Famennian boundary: comparison of high-and low-latitude epicontinental marine settings. Org. Geochem. 98, 38–53 (2016).

Stoilov, I. L., Thompson, J. E., Cho, J. H. & Djerassi, C. Biosynthetic studies of marine lipids. 9. Stereochemical aspects and hydrogen migrations in the biosynthesis of the triply alkylated side chain of the sponge sterol strongylosterol. J. Am. Chem. Soc. 108, 8235–8241 (1986).

Cho, J. H., Thompson, J. E., Stoilov, I. L. & Djerassi, C. Biosynthetic studies of marine lipids. 14. 24(28)-dehydroaplysterol and other sponge sterols from Jaspis stellifera. J. Org. Chem. 53, 3466–3469 (1988).

Pehr, K. et al. Ediacara biota thrived in oligotrophic and bacterially dominated marine environments across Baltica. Nat. Commun. 9, 1807 (2018).