Demonstration of MOCVD-grown Ga2O3 power MOSFETs on sapphire with in-situ Si-doped by tetraethyl orthosilicate (TEOS)
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dong H, et al. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material. J Semicond. 2019. https://doi.org/10.1088/1674-4926/40/1/011802.
Kuramata A, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys. 2016. https://doi.org/10.7567/JJAP.55.1202A2.
Mastro MA, et al. Perspective–opportunities and future directions for Ga2O3. ECS J Solid State Sci Technol. 2017;6(5):356–539. https://doi.org/10.1149/2.0031707jss.
Higashiwaki M, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol. 2016. https://doi.org/10.1088/0268-1242/31/3/034001.
Park J-H, et al. MOCVD grown β-Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire. Appl Phys Express. 2019. https://doi.org/10.7567/1882-0786/ab3b2a.
Gogova D, et al. Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE. J Cryst Growth. 2014;401:665–9. https://doi.org/10.1016/j.jcrysgro.2013.11.056.
Galazka Z, et al. Scaling-up of bulk β-Ga2O3 single-crystals by the Czochralski method. ECS J Solid State Sci Technol. 2017;6(2):Q3007. https://doi.org/10.1149/2.0021702jss.
Kuramata A, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed grown. Jpn J Appl Phys. 2016;55(12):1202A2. https://doi.org/10.7567/JJAP.55.1202A2.
Higashiwaki M, et al. Depletion-mode Ga2O3 metal-oxide-semiconductors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl Phys Lett. 2013. https://doi.org/10.1063/1.4821858.
Zeng K, et al. A field-plated Ga2O3 MOSFET with near 2-kV breakdown voltage and 520 mΩ cm2 on-resistance. Appl Phys Express. 2019. https://doi.org/10.7567/1882-0786/ab2e86.
Wong MH, et al. Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain. Appl Phys Express. 2017. https://doi.org/10.7567/APEX.10.041101.
Higashiwaki M, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transitors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett. 2012. https://doi.org/10.1063/1.3674287.
Sooyeoun Oh, et al. Electrical characteristics of vertical Ni/β-Ga2O3 Schottky barrier diodes at high temperatures. ECS J Solid State Sci Technol. 2016. https://doi.org/10.1149/2.0041702jss.
Tetzner K, et al. Challenges to overcome breakdown limitations in lateral β-Ga2O3 MOSFET devices. Microelectron Reliab. 2020. https://doi.org/10.1016/j.microrel.2020.113951.
Horng RH, Wuu DS, Liu PL, Sood A, Tarntair FG, Chen YH, Pratap SJ, Hsiao CL. Growth mechanism and characteristics of β-Ga2O3 heteroepitaxial grown on sapphire by metalorganic chemical vapor deposition. Mater Today Adv. 2022;16:100320.
Park J-H, et al. Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire substrate by MOCVD. Semicond Sci Technol. 2019. https://doi.org/10.1088/1361-6641/ab2c17.
Sood A, Wuu D, Tarntair F, Sao NT, Wu T, Tumilty N, Kuo H, Pratap SJ, Horng R. Electrical performance study of Schottky barrier diodes using ion implanted β-Ga2O3 epilayers grown on sapphire substrates. Mater Today Adv. 2023. https://doi.org/10.1016/j.mtadv.2023.100346.
Dyakonova N, et al. Temperature dependence of impact ionization in AlGaN-GaN heterostructures. Appl Phys Lett. 1998. https://doi.org/10.1063/1.121418.
Krishnamoorthy S, et al. Delta-doped β-gallium oxide field-effect transistor. Appl Phys Express. 2017. https://doi.org/10.7567/APEX.10.051102.