Demonstrated large-scale production of marine microalgae for fuels and feed
Tóm tắt
Từ khóa
Tài liệu tham khảo
Beal, 2015, Algal biofuel production for fuels and feed in a 100-ha facility: a comprehensive techno-economic analysis and life-cycle assessment, Algal Res., 10, 266, 10.1016/j.algal.2015.04.017
Amer, 2011, Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity, Bioresour. Technol., 102, 9350, 10.1016/j.biortech.2011.08.010
Azadi, 2014, The carbon footprint and non-renewable energy demand of algae-derived biodiesel, Appl. Energy, 113, 1632, 10.1016/j.apenergy.2013.09.027
Benemann, 2012, Life cycle assessment for microalgae oil production, Disruptive Sci. Technol., 1, 68, 10.1089/dst.2012.0013
Benemann, 1996, 1
Brune, 2009, Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil fuels and animal feeds, J. Environ. Eng., 135, 1136, 10.1061/(ASCE)EE.1943-7870.0000100
Davis, 2011, Techno-economic analysis of autotrophic microalgae for fuel production, Appl. Energy, 88, 3524, 10.1016/j.apenergy.2011.04.018
Khoo, 2011, Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons, Bioresour. Technol., 102, 5800, 10.1016/j.biortech.2011.02.055
Lardon, 2009, Life-cycle assessment of biodiesel production from microalgae, Environ. Sci. Technol., 43, 6475, 10.1021/es900705j
Liu, 2013, Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction, Bioresour. Technol., 148, 163, 10.1016/j.biortech.2013.08.112
Lundquist, 2010, 178
Passell, 2013, Algae biodiesel life cycle assessment using current commercial data, J. Environ. Manag., 129, 103, 10.1016/j.jenvman.2013.06.055
Shirvani, 2011, Life cycle energy and greenhouse gas analysis for algae-derived biodiesel, Energy Environ. Sci., 4, 3773, 10.1039/c1ee01791h
Stephenson, 2010, Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors, Energy Fuel, 24, 4062, 10.1021/ef1003123
Vasudevan, 2012, Environmental performance of algal biofuel technology options, Environ. Sci. Technol., 46, 2451, 10.1021/es2026399
Ventura, 2013, Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion, Bioresour. Technol., 137, 302, 10.1016/j.biortech.2013.02.104
Zaimes, 2013, Microalgal biomass production pathways: evaluation of life cycle environmental impacts, Biotechnol. Biofuels, 6, 88, 10.1186/1754-6834-6-88
Batan, 2010, Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae, Environ. Sci. Technol., 44, 7975, 10.1021/es102052y
Davis, 2014, Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale, Environ. Sci. Technol., 48, 6035, 10.1021/es4055719
Jonker, 2013, Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production, Appl. Energy, 102, 461, 10.1016/j.apenergy.2012.07.053
Moody, 2014, Global evaluation of biofuel potential from microalgae, Proc. Natl. Acad. Sci., 111, 8691, 10.1073/pnas.1321652111
Resurreccion, 2012, Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach, Bioresour. Technol., 126, 298, 10.1016/j.biortech.2012.09.038
Slegers, 2013, Scenario evaluation of open pond microalgae production, Algal Res., 2, 358, 10.1016/j.algal.2013.05.001
Craggs, 2012, Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production, J. Appl. Phycol., 24, 329, 10.1007/s10811-012-9810-8
Jimenez, 2003, Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield, Aquaculture, 221, 331, 10.1016/S0044-8486(03)00123-6
Park, 2013, Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling, Water Res., 47, 4422, 10.1016/j.watres.2013.04.001
Acien-Fernandez, 2012, Production cost of a real microalgae production plant and strategies to reduce it, Biotechnol. Adv., 30, 1344, 10.1016/j.biotechadv.2012.02.005
Molina Grima, 2003, Recovery of microalgal biomass and metabolites: process options and economics, Biotechnol. Adv., 20, 491, 10.1016/S0734-9750(02)00050-2
Huntley, 2007, CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal, Mitig. Adapt. Strateg. Glob. Chang., 12, 573, 10.1007/s11027-006-7304-1
Rodolfi, 2009, Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng., 102, 100, 10.1002/bit.22033
Chisti, 2013, Constraints to commercialization of algal fuels, J. Biotechnol., 167, 201, 10.1016/j.jbiotec.2013.07.020
Gallagher, 2011, The economics of producing biodiesel from algae, Renew. Energy, 36, 158, 10.1016/j.renene.2010.06.016
Richardson, 2012, Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest, Algal Res., 1, 93, 10.1016/j.algal.2012.04.001
Wood, 2005, Measuring growth rates in microalgal cultures, 269
Bittar, 2013, Carbon allocation under light and nitrogen resource gradients in two model marine phytoplankton1, J. Phycol., 49, 523, 10.1111/jpy.12060
Johnson, 2015
Ringuet, 2011, A suite of microplate reader-based colorimetric methods to quantify ammonium, nitrate, orthophosphate and silicate concentrations for aquatic nutrient monitoring, J. Environ. Monit., 13, 370, 10.1039/C0EM00290A
Wiebe, 1975, Relationships between zooplankton displacement volume, wet weight, dry weight, and carbon, Fish. Bull., 73, 777
Gardner, 1985, Micromethod for lipids in aquatic invertebrates, Limnol. Oceanogr., 30, 1100, 10.4319/lo.1985.30.5.1099
Silversand, 1997, Improved high-performance liquid chromatographic method for the separation and quantification of lipid classes: application to fish lipids, J. Chromatogr. B, 703, 7, 10.1016/S0378-4347(97)00385-X
Andersen, 2005, Appendix A — recipes for freshwater and seawater media, 429
Carvalho, 2006, Microalgal reactors: a review of enclosed system designs and performances, Biotechnol. Prog., 22, 1490, 10.1002/bp060065r
Olaizola, 2000, Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors, J. Appl. Phycol., 12, 499, 10.1023/A:1008159127672
Molina, 2001, Tubular photobioreactor design for algal cultures, J. Biotechnol., 92, 113, 10.1016/S0168-1656(01)00353-4
Ugwu, 2008, Photobioreactors for mass cultivation of algae, Bioresour. Technol., 99, 4021, 10.1016/j.biortech.2007.01.046
Lee, 2014, Design tool and guidelines for outdoor photobioreactors, Chem. Eng. Sci., 106, 18, 10.1016/j.ces.2013.11.014
Pulz, 2001, Photobioreactors: production systems for phototrophic microorganisms, Appl. Microbiol. Biotechnol., 57, 287, 10.1007/s002530100702
Gerhart, 1992
Moheimani, 2007, Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds, Biotechnol. Bioeng., 96, 27, 10.1002/bit.21169
Peng, 2013, Evolution, detrimental effects, and removal of oxygen in microalga cultures: a review, Environ. Prog. Sustainable Energy, 32, 982, 10.1002/ep.11841
Mendoza, 2013, Fluid-dynamic characterization of real-scale raceway reactors for microalgae production, Biomass Bioenergy, 54, 267, 10.1016/j.biombioe.2013.03.017
Monteith, 1965, Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205
Johnson, 2010, Pond evaporation, 1
Borowitzka, M.A., ed. Culturing microalgae in outdoor ponds. ed. R.A. Andersen. 2005, Elsevier: Amsterdam. 205-218.
Weissman, 1987, 1
Chiaramonti, 2013, Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible, Appl. Energy, 102, 101, 10.1016/j.apenergy.2012.07.040
Sarthou, 2005, Growth physiology and fate of diatoms in the ocean: a review, J. Sea Res., 53, 25, 10.1016/j.seares.2004.01.007
Passow, 1991, Species-specific sedimentation and sinking rates in diatoms, Mar. Biol., 108, 449, 10.1007/BF01313655
Smayda, 1971, Normal and accelerated sinking of phytoplankton in the sea, Mar. Geol., 11, 105, 10.1016/0025-3227(71)90070-3
Geider, 2002, Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis, Eur. J. Phycol., 37, 1, 10.1017/S0967026201003456
Johnson, 2010, Evaluation of pond liner materials — effects on algal cultures, 1
Ketheesan, 2011, Development of a new airlift-driven raceway reactor for algal cultivation, Appl. Energy, 88, 3370, 10.1016/j.apenergy.2010.12.034
Knuckey, 2006, Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds, Aquac. Eng., 35, 300, 10.1016/j.aquaeng.2006.04.001
Jameson, 1999, Hydrophobicity and floc density in induced-air flotation for water treatment, Colloids Surf. A Physicochem. Eng. Asp., 151, 269, 10.1016/S0927-7757(98)00503-2
Ferron, 2012, Air-water fluxes of N2O and CH4 during microalgae (Staurosira sp.) cultivation in an open raceway pond, Environ. Sci. Technol., 46, 10842, 10.1021/es302396j
Fagerstone, 2011, Quantitative measurement of direct nitrous oxide emissions from microalgae cultivation, Environ. Sci. Technol., 45, 9449, 10.1021/es202573f
Hardy, 2010, Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal, Aquac. Res., 41, 770, 10.1111/j.1365-2109.2009.02349.x
Brennan, 2010, Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev., 14, 557, 10.1016/j.rser.2009.10.009
Hallenbeck, 2002, Biological hydrogen production; fundamentals and limiting processes, Int. J. Hydrog. Energy, 27, 1185, 10.1016/S0360-3199(02)00131-3
Weissman, 1989, 1
Godfray, 2010, Food security: the challenge of feeding 9 billion people, Science, 327, 812, 10.1126/science.1185383