Demonstrated large-scale production of marine microalgae for fuels and feed

Algal Research - Tập 10 - Trang 249-265 - 2015
Mark Huntley1,2,3, Zackary I. Johnson3, Susan L Brown4, Deborah L. Sills5,6, Léda Gerber7,6, Ian Archibald8, Stephen C. Machesky9, Joe Granados10, Colin M. Beal11, Charles H. Greene6
1Cellana LLC, 73-4460 Queen Ka'ahumanu Highway, Kailua-Kona, HI 96740, United States
2Cornell University, Department of Biological and Environmental Engineering, Riley-Robb, 111 Wing Drive, Ithaca, NY 14853, United States
3Duke University, Marine Laboratory (Nicholas School of the Environment) and Department of Biology, 135 Duke Marine Lab Road, Beaufort, NC 28516, United States
4University of Hawaii at Manoa, Department of Oceanography, MSB 205, 1000 Pope Road, Honolulu, HI 96822, United States
5Bucknell University, Department of Civil and Environmental Engineering, 215 Dana Engineering, Lewisburg, PA 17837, United States
6Cornell University, Department of Earth and Atmospheric Sciences, 4120 Snee Hall, Ithaca, NY 14853, United States
7Cornell University, Department of Chemical and Biomolecular Engineering, 120 Olin Hall, Ithaca, NY 14853, United States
8Cinglas Ltd, Chester, United Kingdom
9KCPM Inc., dba Kokua Contracting and Project Management, 77-6441 Kuakini Highway, Kailua-Kona, HI 96740, United States
10Institute for Integrated Renewables, 73-4617 Kaloko Halia Place, Kailua-Kona, HI 96740, United States
11B&D Engineering and Consulting LLC, 7419 State Hwy 789, Lander, WY 82520, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Beal, 2015, Algal biofuel production for fuels and feed in a 100-ha facility: a comprehensive techno-economic analysis and life-cycle assessment, Algal Res., 10, 266, 10.1016/j.algal.2015.04.017

Amer, 2011, Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity, Bioresour. Technol., 102, 9350, 10.1016/j.biortech.2011.08.010

Azadi, 2014, The carbon footprint and non-renewable energy demand of algae-derived biodiesel, Appl. Energy, 113, 1632, 10.1016/j.apenergy.2013.09.027

Benemann, 2012, Life cycle assessment for microalgae oil production, Disruptive Sci. Technol., 1, 68, 10.1089/dst.2012.0013

Benemann, 1996, 1

Brune, 2009, Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil fuels and animal feeds, J. Environ. Eng., 135, 1136, 10.1061/(ASCE)EE.1943-7870.0000100

Davis, 2011, Techno-economic analysis of autotrophic microalgae for fuel production, Appl. Energy, 88, 3524, 10.1016/j.apenergy.2011.04.018

Khoo, 2011, Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons, Bioresour. Technol., 102, 5800, 10.1016/j.biortech.2011.02.055

Lardon, 2009, Life-cycle assessment of biodiesel production from microalgae, Environ. Sci. Technol., 43, 6475, 10.1021/es900705j

Liu, 2013, Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction, Bioresour. Technol., 148, 163, 10.1016/j.biortech.2013.08.112

Lundquist, 2010, 178

Passell, 2013, Algae biodiesel life cycle assessment using current commercial data, J. Environ. Manag., 129, 103, 10.1016/j.jenvman.2013.06.055

Shirvani, 2011, Life cycle energy and greenhouse gas analysis for algae-derived biodiesel, Energy Environ. Sci., 4, 3773, 10.1039/c1ee01791h

Stephenson, 2010, Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors, Energy Fuel, 24, 4062, 10.1021/ef1003123

Vasudevan, 2012, Environmental performance of algal biofuel technology options, Environ. Sci. Technol., 46, 2451, 10.1021/es2026399

Ventura, 2013, Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion, Bioresour. Technol., 137, 302, 10.1016/j.biortech.2013.02.104

Zaimes, 2013, Microalgal biomass production pathways: evaluation of life cycle environmental impacts, Biotechnol. Biofuels, 6, 88, 10.1186/1754-6834-6-88

Batan, 2010, Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae, Environ. Sci. Technol., 44, 7975, 10.1021/es102052y

Davis, 2014, Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale, Environ. Sci. Technol., 48, 6035, 10.1021/es4055719

Jonker, 2013, Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production, Appl. Energy, 102, 461, 10.1016/j.apenergy.2012.07.053

Moody, 2014, Global evaluation of biofuel potential from microalgae, Proc. Natl. Acad. Sci., 111, 8691, 10.1073/pnas.1321652111

Resurreccion, 2012, Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach, Bioresour. Technol., 126, 298, 10.1016/j.biortech.2012.09.038

Slegers, 2013, Scenario evaluation of open pond microalgae production, Algal Res., 2, 358, 10.1016/j.algal.2013.05.001

Craggs, 2012, Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production, J. Appl. Phycol., 24, 329, 10.1007/s10811-012-9810-8

Jimenez, 2003, Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield, Aquaculture, 221, 331, 10.1016/S0044-8486(03)00123-6

Park, 2013, Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling, Water Res., 47, 4422, 10.1016/j.watres.2013.04.001

Acien-Fernandez, 2012, Production cost of a real microalgae production plant and strategies to reduce it, Biotechnol. Adv., 30, 1344, 10.1016/j.biotechadv.2012.02.005

Molina Grima, 2003, Recovery of microalgal biomass and metabolites: process options and economics, Biotechnol. Adv., 20, 491, 10.1016/S0734-9750(02)00050-2

Huntley, 2007, CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal, Mitig. Adapt. Strateg. Glob. Chang., 12, 573, 10.1007/s11027-006-7304-1

Rodolfi, 2009, Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng., 102, 100, 10.1002/bit.22033

Chisti, 2013, Constraints to commercialization of algal fuels, J. Biotechnol., 167, 201, 10.1016/j.jbiotec.2013.07.020

Gallagher, 2011, The economics of producing biodiesel from algae, Renew. Energy, 36, 158, 10.1016/j.renene.2010.06.016

Richardson, 2012, Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest, Algal Res., 1, 93, 10.1016/j.algal.2012.04.001

Wood, 2005, Measuring growth rates in microalgal cultures, 269

Bittar, 2013, Carbon allocation under light and nitrogen resource gradients in two model marine phytoplankton1, J. Phycol., 49, 523, 10.1111/jpy.12060

Johnson, 2015

Ringuet, 2011, A suite of microplate reader-based colorimetric methods to quantify ammonium, nitrate, orthophosphate and silicate concentrations for aquatic nutrient monitoring, J. Environ. Monit., 13, 370, 10.1039/C0EM00290A

Wiebe, 1975, Relationships between zooplankton displacement volume, wet weight, dry weight, and carbon, Fish. Bull., 73, 777

Gardner, 1985, Micromethod for lipids in aquatic invertebrates, Limnol. Oceanogr., 30, 1100, 10.4319/lo.1985.30.5.1099

Silversand, 1997, Improved high-performance liquid chromatographic method for the separation and quantification of lipid classes: application to fish lipids, J. Chromatogr. B, 703, 7, 10.1016/S0378-4347(97)00385-X

Andersen, 2005, Appendix A — recipes for freshwater and seawater media, 429

Carvalho, 2006, Microalgal reactors: a review of enclosed system designs and performances, Biotechnol. Prog., 22, 1490, 10.1002/bp060065r

Olaizola, 2000, Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors, J. Appl. Phycol., 12, 499, 10.1023/A:1008159127672

Molina, 2001, Tubular photobioreactor design for algal cultures, J. Biotechnol., 92, 113, 10.1016/S0168-1656(01)00353-4

Ugwu, 2008, Photobioreactors for mass cultivation of algae, Bioresour. Technol., 99, 4021, 10.1016/j.biortech.2007.01.046

Lee, 2014, Design tool and guidelines for outdoor photobioreactors, Chem. Eng. Sci., 106, 18, 10.1016/j.ces.2013.11.014

Pulz, 2001, Photobioreactors: production systems for phototrophic microorganisms, Appl. Microbiol. Biotechnol., 57, 287, 10.1007/s002530100702

Gerhart, 1992

Moheimani, 2007, Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds, Biotechnol. Bioeng., 96, 27, 10.1002/bit.21169

Peng, 2013, Evolution, detrimental effects, and removal of oxygen in microalga cultures: a review, Environ. Prog. Sustainable Energy, 32, 982, 10.1002/ep.11841

Mendoza, 2013, Fluid-dynamic characterization of real-scale raceway reactors for microalgae production, Biomass Bioenergy, 54, 267, 10.1016/j.biombioe.2013.03.017

Monteith, 1965, Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205

Johnson, 2010, Pond evaporation, 1

Borowitzka, M.A., ed. Culturing microalgae in outdoor ponds. ed. R.A. Andersen. 2005, Elsevier: Amsterdam. 205-218.

Weissman, 1987, 1

Chiaramonti, 2013, Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible, Appl. Energy, 102, 101, 10.1016/j.apenergy.2012.07.040

Sarthou, 2005, Growth physiology and fate of diatoms in the ocean: a review, J. Sea Res., 53, 25, 10.1016/j.seares.2004.01.007

Passow, 1991, Species-specific sedimentation and sinking rates in diatoms, Mar. Biol., 108, 449, 10.1007/BF01313655

Smayda, 1971, Normal and accelerated sinking of phytoplankton in the sea, Mar. Geol., 11, 105, 10.1016/0025-3227(71)90070-3

Geider, 2002, Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis, Eur. J. Phycol., 37, 1, 10.1017/S0967026201003456

Johnson, 2010, Evaluation of pond liner materials — effects on algal cultures, 1

Ketheesan, 2011, Development of a new airlift-driven raceway reactor for algal cultivation, Appl. Energy, 88, 3370, 10.1016/j.apenergy.2010.12.034

Knuckey, 2006, Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds, Aquac. Eng., 35, 300, 10.1016/j.aquaeng.2006.04.001

Jameson, 1999, Hydrophobicity and floc density in induced-air flotation for water treatment, Colloids Surf. A Physicochem. Eng. Asp., 151, 269, 10.1016/S0927-7757(98)00503-2

Ferron, 2012, Air-water fluxes of N2O and CH4 during microalgae (Staurosira sp.) cultivation in an open raceway pond, Environ. Sci. Technol., 46, 10842, 10.1021/es302396j

Fagerstone, 2011, Quantitative measurement of direct nitrous oxide emissions from microalgae cultivation, Environ. Sci. Technol., 45, 9449, 10.1021/es202573f

Hardy, 2010, Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal, Aquac. Res., 41, 770, 10.1111/j.1365-2109.2009.02349.x

Brennan, 2010, Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev., 14, 557, 10.1016/j.rser.2009.10.009

Hallenbeck, 2002, Biological hydrogen production; fundamentals and limiting processes, Int. J. Hydrog. Energy, 27, 1185, 10.1016/S0360-3199(02)00131-3

Weissman, 1989, 1

Godfray, 2010, Food security: the challenge of feeding 9 billion people, Science, 327, 812, 10.1126/science.1185383

Mendoza, 2013, Oxygen transfer and evolution in microalgal culture in open raceways, Bioresour. Technol., 137, 188, 10.1016/j.biortech.2013.03.127