Demazure Modules, Fusion Products and Q-Systems
Tóm tắt
In this paper, we introduce a family of indecomposable finite-dimensional graded modules for the current algebra associated to a simple Lie algebra. These modules are indexed by an
$${|R^{+}|}$$
-tuple of partitions
$${{\mathbf \xi}=(\xi^\alpha)}$$
, where α varies over a set
$${R^{+}}$$
of positive roots of
$${\mathfrak{g}}$$
and we assume that they satisfy a natural compatibility condition. In the case when the
$${\xi^\alpha}$$
are all rectangular, for instance, we prove that these modules are Demazure modules in various levels. As a consequence, we see that the defining relations of Demazure modules can be greatly simplified. We use this simplified presentation to relate our results to the fusion products, defined in (Feigin and Loktev in Am Math Soc Transl Ser (2) 194:61–79, 1999), of representations of the current algebra. We prove that the Q-system of (Hatayama et al. in Contemporary Mathematics, vol. 248, pp. 243–291. American Mathematical Society, Providence, 1998) extends to a canonical short exact sequence of fusion products of representations associated to certain special partitions
$${\xi}$$
.Finally, in the last section we deal with the case of
$${\mathfrak{sl}_2}$$
and prove that the modules we define are just fusion products of irreducible representations of the associated current algebra and give monomial bases for these modules.
Tài liệu tham khảo
Ardonne E., Kedem R.: Fusion products of Kirillov–Reshetikhin modules and fermionic multiplicity formulas. J. Algebra 308, 270–294 (2007)
Beck J., Nakajima H.: Crystal bases and two-sided cells of quantum affine algebras. Duke Math. J. 123(2), 335–402 (2004)
Bennett, M., Berenstein, A., Chari, V., Khoroshkin, A., Loktev, S.: BGG reciprocity for the current algebra of \({\mathfrak{sl}_{n+1}}\) (in preparation)
Bennett M., Chari V., Manning N.: BGG reciprocity for current algebras. Adv. Math. 231(1):276–305
Chari, V.: On the fermionic formula and the Kirillov-Reshetikhin conjecture. Int. Math. Res. Notices 12, 629–654 (2001)
Chari V.: Braid group actions and tensor products. Int. Math. Res. Notices 7, 357–382 (2002)
Chari V., Fourier G., Khandai T.: A categorical approach to Weyl modules. Transform. Groups 15(3), 517–549 (2010)
Chari, V., Ion, B.: BGG reciprocity for current algebras. arXiv:1307.1440
Chari V., Loktev S.: Weyl, Demazure and fusion modules for the current algebra of \({\mathfrak{sl}_{r+1}}\). Adv. Math. 207, 928–960 (2006)
Chari V., Moura A.: The restricted Kirillov–Reshetikhin modules for the current and twisted current algebras. Commun. Math. Phys. 266(2), 431–454 (2006)
Chari V., Pressley A.: Weyl modules for classical and quantum affine algebras. Represent. Theory 5, 191–223 (2001)
Di Francesco, P., Kedem, R.: Proof of the combinatorial Kirillov–Reshetikhin conjecture. Int. Math. Res. Notices IMRN 7, Art. ID rnn006, 57 (2008)
Feigin, B., Feigin, E.: q-characters of the tensor products in \({\mathfrak{sl}_2}\)-case. Mosc. Math. J. 2(3), 567–588, arXiv:math.QA/0201111 (2002)
Feigin B., Feigin E.: Schubert varieties and the fusion products. Publ. Res. Inst. Math. Sci. 40(3), 625–668 (2004)
Feigin, B., Loktev, S.: On generalized Kostka polynomials and the quantum Verlinde rule. Differential topology, infinite-dimensional Lie algebras, and applications. Am. Math. Soc. Transl. Ser. (2) 194, 61–79, arXiv:math.QA/9812093 (1999)
Feigin, B., Kirillov, A.N., Loktev, S.: Combinatorics and geometry of higher level Weyl modules. Moscow Seminar on Mathematical Physics. II. Am. Math. Soc. Transl. Ser. 2 221, 33–47; American Mathematical Society, Providence (2007)
Fourier G., Littelmann P.: Tensor product structure of affine Demazure modules and limit constructions. Nagoya Math. J. 182, 171–198 (2006)
Fourier G., Littelmann P.: Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions. Adv. Math. 211(2), 566–593 (2007)
Garland H.: The arithmetic theory of loop algebras. J. Algebra 53, 480–551 (1978)
Geiss, C., Leclerc, B., Schröer, J.: Preprojective algebras and cluster algebras. In: Trends in Representation Theory of Algebras and Related Topics, pp. 253–283. EMS Series of Congress Reports, European Mathematical Society, Zürich (2008)
Gekhtman M., Shapiro M., Vainshtein A.: Generalized Bäcklund–Darboux transformations for Coxeter–Toda flows from cluster algebra perspective. Acta Math. 206(2), 245–310 (2011)
Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Yamada, Y.: Remarks on fermionic formula. In: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998). Contemporary Mathematics, vol. 248, pp. 243–291. American Mathematical Society, Providence (1999)
Hernandez D.: The Kirillov–Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596, 63–87 (2006)
Hernandez D., Leclerc B.: Cluster algebras and quantum affine algebras. Duke Math. J. 154(2), 265–341 (2010)
Kedem, R.: A pentagon of identities, graded tensor products, and the Kirillov–Reshetikhin conjecture. In: New Trends in Quantum Integrable Systems, pp. 173–193. World Scientific Publishing, Hackensack (2011)
Kirillov A.N., Reshetikhin N.Yu.: Representations of Yangians and multiplicity of occurrence of the irreducible components of the tensor product of representations of simple Lie algebras. J. Soviet Math. 52, 3156–3164 (1990)
Kodera R., Naoi K.: Loewy series of Weyl modules and the Poincare polynomials of quiver varieties. Publ. Res. Inst. Math. Sci. 48(3), 477–500 (2012)
Kuniba A., Misra K.C., Okado M., Takagi T., Uchiyama J.: Paths, Demazure crystals and symmetric functions. J. Math. Phys. 41(9), 6477–6486 (2000)
Magyar P.: Littelmann paths for the basic representations of an affine Lie algebra. J. Algebra 305(2), 1037–1054 (2006)
Mukhin E., Young C.A.S.: Extended T-systems. Selecta. Math. 18(3), 591–631 (2012)
Nakajima H.: t-analogs of q-characters of Kirillov–Reshetikhin modules of quantum affine algebras. Represent. Theory (electronic) 7, 259–274 (2003)
Nakajima H.: Quiver varieties and t-Analogs of q-characters of quantum affine algebras. Ann. Math. 160, 1057–1097 (2004)
Naoi K.: Weyl modules, Demazure modules and finite crystals for non-simply laced type. Adv. Math. 229(2), 875–934 (2012)
Naoi K.: Fusion products of Kirillov–Reshetikhin modules and the X = M conjecture. Adv. Math. 231(3–4), 1546–1571 (2012)