Kỹ thuật Quản lý Năng lượng Tối ưu Dựa trên Quản lý Phân khúc Nhu cầu cho Lưới Điện Thông minh

Springer Science and Business Media LLC - Tập 41 - Trang 81-91 - 2017
Junaid Ahmad1, Muhammad Abrar1
1Department of Electrical Engineering, UCE & T Bahauddin Zakariya University, Multan, Pakistan

Tóm tắt

Lưới điện thông minh (SG) được giải thích là một sự tăng cường của lưới điện thế kỷ 20. Nó cung cấp điện từ phía sản xuất đến phía tiêu dùng bằng cách sử dụng công nghệ kỹ thuật số hiện đại nhằm giảm tiêu thụ năng lượng của khách hàng và tiết kiệm năng lượng. Quản lý bên nhu cầu (DSM) có tầm quan trọng lớn trong lưới điện thông minh, vì nó đảm bảo sự cân bằng nhu cầu theo thời gian thực. Bên cạnh việc cải thiện giảm chi phí, chúng tôi đã làm việc về vấn đề đỉnh phục hồi. Nghiên cứu này tìm kiếm một kỹ thuật quản lý năng lượng tối ưu để tối thiểu hóa chi phí điện cho người tiêu dùng cũng như giảm thiểu đỉnh phục hồi. Một thuật toán tối ưu được thiết kế để giảm chi phí và đỉnh phục hồi trong khi đáp ứng nhu cầu của người tiêu dùng. Hơn nữa, chúng tôi đã làm việc trên các ràng buộc hiệu quả hơn để đạt được kết quả hiệu quả hơn. Các kỹ thuật tối ưu hóa được sử dụng để tìm các giải pháp sản xuất. Giải pháp không tối ưu được đề xuất để giảm độ phức tạp của tính toán. Hiệu quả của giải pháp đề xuất được chứng minh thông qua mô phỏng và kết quả đáng chú ý.

Từ khóa

#quản lý năng lượng #lưới điện thông minh #quản lý bên nhu cầu #tối ưu hóa #chi phí điện

Tài liệu tham khảo

Alizadeh M, Scaglione A, Thomas RJ (2011) Direct load management of electric vehicles. In: Proc. IEEE Int. Conf. audio, speech and signal processing (ICASSP), pp 5964–5967, 2011 Alizadeh M, Scaglione A, Thomas R, Callaway D (2011) Information infrastructure for cellular load management in green power delivery systems. In: Proc. IEEE int. conf. smart grid commun., Brussels, Belgium, Oct. 2011 Bae H, Yoon J, Lee Y, Lee J, Kim T, Yu J, Cho S User-friendly demand side management for smart grid networks. In: International conf. on information networking (ICOIN), 2014. IEEE, pp 481–485 Bae H, Yoon J, Lee Y, Lee J, Kim T, Yu J, Cho S (2014) Userfriendly demand side management for smart grid networks. Int Conf Inf Netw 2014:481–485 Baharlouei Z, Hashemi M, Narimani H, Mohsenian-Rad H (2013) Achieving optimality and fairness in autonomous demand response: benchmarks and billing mechanisms. IEEE Trans Smart Grid 4(2):968–975 Bahrami S, Sheikhi A (2015) From demand response in smart grid toward integrated demand response in smart energy hub. IEEE Trans Smart Grid 7(2):650–658 Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge Burr MT (2003) Reliability demands drive automation investments. Public Utilities Fortnightly, Technology Corridor Department, vol 1, no. 11, 2003 Chavali P, Yang P, Nehorai A (2014) A distributed algorithm of appliance scheduling for home energy management system. IEEE Trans Smart Grid 5(1):282–290 Chen C, Kishore S, Snyder LV (2011) An innovative RTP-based residential power scheduling scheme for smart grids. In: IEEE international conf. on acoustics, speech and signal processing (ICASSP), 2011. IEEE, pp 5956–5959 Farhangi H (2010) The path of the smart grid. IEEE Power Energ Mag 8(1):18–28 Freund RM (2004) Applied Lagrange duality for constrained optimization. Massachusetts Institute of Technology, Cambridge Gungor VC, Sahin D, Kocak T, Ergut S, Buccella C, Cecati C, Hancke GP (2011) Smart grid technologies: communication technologies and standards. IEEE Trans Indus Inform 7(4):529–539 Guo Y, Pan M, Fang Y, Khargonekar PP (2012) Coordinated energy scheduling for residential households in the smart grid. In: IEEE Third International Conference on Smart Grid Communications (SmartGridComm), 2012. IEEE, pp 121–126 Hashmi M, Hanninen S, Maki K (2011) Survey of smart grid concepts, architectures and technological demonstrations worldwide. In: IEEE conf. on innovative smart grid technologies (ISGT Latin America), p 17, 2011 Imamura A, Yamamoto S, Tazoe T, Onda H, Takeshita H, Okamoto S, Yamanaka N (2013) Distributed demand scheduling method to reduce energy cost in smart grid. In: 2013 IEEE Region 10 Humanitarian Technology Conference, R10-HTC 2013, p 54 Jiang Z, Li F, Qiao W, Sun H, Wan H, Wang J, Xia Y, Xu Z, Zhang P (2009) A vision of smart transmission grids. In: IEEE, power and energy society general meeting, p 110, 2009 Khomami HP, Javidi MH (2013) An efficient home energy management system for automated residential demand response. In: 13th international conf. on environment and electrical engineering (EEEIC), 2013. IEEE, pp 307–312 Li F, Qiao W, Sun H, Wan H, Wang J, Xia Y, Xu Z, Zhang P (2010) Smart transmission grid: vision and framework. IEEE Trans Smart Grid 1(2):168177 Li Y, Ng BL, Trayer M, Liu L (2012) Automated residential demand response: algorithmic implications of pricing models. IEEE Trans Smart Grid 3(4):1712–1721 Ma K, Hu G, Spanos CJ (2013) Energy consumption scheduling in smart grid: a non-cooperative game approach. In: 2013 9th Asian control conference (ASCC), 2013. IEEE, p 16 Mohsenian-Rad A-H, Wong VW, Jatskevich J, Schober R (2010) Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid. In: Innovative Smart Grid Technologies (ISGT), 2010. IEEE, p 16 Mohsenian-Rad A-H, Wong VW, Jatskevich J, Schober R, Leon-Garcia A (2010b) Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans Smart Grid 1(3):320–331 Momoh JA (2009) Smart grid design for ecient and exible power networks operation and control. In: Power systems conference and exposition, 2009. IEEE, p 18 Nguyen HK, Song JB, Han Z (2012) Demand side management to reduce peak- to-average ratio using game theory in smart grid. In: IEEE conf. on computer communications workshops (INFOCOM WKSHPS), 2012. IEEE, pp 91–96 Palensky P, Dietrich D (2011) Demand side management: demand response, intelligent energy systems, and smart loads. IEEE Trans Indus Inform 7(3):381–388 Pazheri F, Khan H, Ahamed I (2011) Smart grid implementation across the globe: a survey. In: IEEE Conf. Innovative Smart Grid Technologies-India (ISGT India), p 15, 2011 Rayati M, Sheikhi A, Ranjbar AM (2015) Optimising operational cost of a smart energy hub, the reinforcement learning approach. Int J Parallel Emerg Distrib Syst 30(4):325–341 Ruiz N, Cobelo I, Oyarzabal J (2009) A direct load control model for virtual power plant management. IEEE Trans Power Syst 24(2):959–966 Samadi P, Mohsenian-Rad A-H, Schober R, Wong VW, Jatskevich J (2010) Optimal real-time pricing algorithm based on utility maximization for smart grid. In: First IEEE international conf. on smart grid communications (Smart Grid Comm), 2010. IEEE, pp 415–420 Sheikhi A, Ranjbar AM, Oraee H (2012) Financial analysis and optimal size and operation for a multicarrier energy system. Energ Build 48:71–78 Sheikhi A et al (2013) Distributed generation penetration impact on distribution networks loss. In: International conference on renewable energies and power quality Sheikhi A, Rayati M, Bahrami S, Ranjbar AM (2015a) Integrated demand side management game in smart energy hubs. IEEE Trans Smart Grid 6(2):675–683 Sheikhi A, Bahrami S, Ranjbar AM (2015b) An autonomous demand response program for electricity and natural gas networks in smart energy hubs. Energy 89:490–499 Sheikhi A, Rayati M, Bahrami S, Ranjbar AM, Sattari S (2016) A cloud computing framework on demand side management game in smart energy hubs. Int J Electr Pow Energy Syst 64:1007–1016 Shinwari M, Youssef A, Hamouda W (2012) A water-filling based scheduling algorithm for the smart grid. IEEE Trans Smart Grid 3(2):710–719 Vuppala SK, Padmanabh K, Bose SK, Paul S (2011) Incorporating fairness within demand response programs in smart grid. In: 2011 IEEE PES Innovative Smart Grid Technologies (ISGT), 2011. IEEE, p 19 Xiao J, Chung JY, Li J, Boutaba R, Hong JW-K Near optimal demandside energy management under real-time demand-response pricing. In: International conf. on network and service management (CNSM), 2010. IEEE, pp 527–532 Zhao Z, Lee WC, Shin Y, Song K-B (2013) An optimal power scheduling method for demand response in home energy management system. IEEE Trans Smart Grid 4(3):1391–1400