Delta invariants of smooth cubic surfaces

European Journal of Mathematics - Tập 5 Số 3 - Trang 729-762 - 2019
Ivan Cheltsov1,2, Kewei Zhang3
1Laboratory of Algebraic Geometry, National Research University Higher School of Economics, Moscow, Russia
2School of Mathematics, The University of Edinburgh, Edinburgh, UK
3Beijing International Center for Mathematical Research, Peking University, Beijing, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bauer, Th., Küronya, A., Szemberg, T.: Zariski chambers, volumes, and stable base loci. J. Reine Angew. Math. 576, 209–233 (2004)

Blum, H., Jonsson, M.: Thresholds, valuations, and $$K$$-stability (2017). arXiv:1706.04548

Berman, R., Boucksom, S., Jonsson, M.: A variational approach to the Yau–Tian–Donaldson conjecture (2018). arXiv:1509.04561v2

Chen, X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds. J. Amer. Math. Soc. 28(1), 183–278 (2015)

Cheltsov, I.: Log canonical thresholds of del Pezzo surfaces. Geom. Funct. Anal. 18(4), 1118–1144 (2008)

Cheltsov, I.A., Rubinstein, Y.A.: Asymptotically log Fano varieties. Adv. Math. 285, 1241–1300 (2015)

Cheltsov, I.A., Rubinstein, Y.A., Zhang, K.: Basis log canonical thresholds, local intersection estimates, and asymptotically log del Pezzo surfaces (2018). arXiv:1807.07135v2

Cheltsov, I.A., Shramov, K.A.: Log canonical thresholds of smooth Fano threefolds. With an appendix by J.-P. Demailly. Russian Math. Surveys 63(5), 859–958 (2008)

Dolgachev, I.V.: Classical Algebraic Geometry. Cambridge University Press, Cambridge (2012)

Fujita, K.: K-stability of Fano manifolds with not small alpha invariants. J. Inst. Math. Jussieu 18(3), 519–530 (2019)

Fujita, K.: Uniform K-stability and plt blowups of log Fano pairs. Kyoto J. Math. 59(2), 399–418 (2019)

Fujita, K., Odaka, Y.: On the K-stability of Fano varieties and anticanonical divisors. Tohoku Math. J. 70(4), 511–521 (2018)

Fujita, T.: On Zariski problem. Proc. Japan Acad. Ser. A Math. Sci. 55(3), 106–110 (1979)

Kollár, J.: Singularities of pairs. In: Kollár, J., Lazarsfeld, R., Morrison, D.R. (eds.) Algebraic Geometry, pp. 221–287. Proceedings of Symposia in Pure Mathematics, vol. 62.2. American Mathematical Society, Providence (1997)

Lazarsfeld, R.: Positivity in Algebraic Geometry, I, II. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A, vols. 48, 49. Springer, Berlin (2004)

Lazarsfeld, R., Mustaţă, M.: Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. 42(5), 783–835 (2009)

Park, J., Won, J.: K-stability of smooth del Pezzo surfaces. Math. Ann. 372(3–4), 1239–1276 (2018)

Prokhorov, Yu.G.: On the Zariski decomposition problem. Proc. Steklov Inst. Math. 240, 37–65 (2003)

Tian, G.: On Kähler–Einstein metrics on certain Kähler manifolds with $$C_1(M)>0$$. Invent. Math. 89(2), 225–246 (1987)

Tian, T.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101(1), 101–172 (1990)

Tian, G.: K-stability and Kähler–Einstein metrics. Comm. Pure Appl. Math. 68(7), 1085–1156 (2015)

Wang, X.-J., Zhu, X.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188(1), 87–103 (2004)