Delta invariants of smooth cubic surfaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bauer, Th., Küronya, A., Szemberg, T.: Zariski chambers, volumes, and stable base loci. J. Reine Angew. Math. 576, 209–233 (2004)
Blum, H., Jonsson, M.: Thresholds, valuations, and $$K$$-stability (2017). arXiv:1706.04548
Berman, R., Boucksom, S., Jonsson, M.: A variational approach to the Yau–Tian–Donaldson conjecture (2018). arXiv:1509.04561v2
Chen, X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds. J. Amer. Math. Soc. 28(1), 183–278 (2015)
Cheltsov, I.: Log canonical thresholds of del Pezzo surfaces. Geom. Funct. Anal. 18(4), 1118–1144 (2008)
Cheltsov, I.A., Rubinstein, Y.A.: Asymptotically log Fano varieties. Adv. Math. 285, 1241–1300 (2015)
Cheltsov, I.A., Rubinstein, Y.A., Zhang, K.: Basis log canonical thresholds, local intersection estimates, and asymptotically log del Pezzo surfaces (2018). arXiv:1807.07135v2
Cheltsov, I.A., Shramov, K.A.: Log canonical thresholds of smooth Fano threefolds. With an appendix by J.-P. Demailly. Russian Math. Surveys 63(5), 859–958 (2008)
Fujita, K.: K-stability of Fano manifolds with not small alpha invariants. J. Inst. Math. Jussieu 18(3), 519–530 (2019)
Fujita, K.: Uniform K-stability and plt blowups of log Fano pairs. Kyoto J. Math. 59(2), 399–418 (2019)
Fujita, K., Odaka, Y.: On the K-stability of Fano varieties and anticanonical divisors. Tohoku Math. J. 70(4), 511–521 (2018)
Kollár, J.: Singularities of pairs. In: Kollár, J., Lazarsfeld, R., Morrison, D.R. (eds.) Algebraic Geometry, pp. 221–287. Proceedings of Symposia in Pure Mathematics, vol. 62.2. American Mathematical Society, Providence (1997)
Lazarsfeld, R.: Positivity in Algebraic Geometry, I, II. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A, vols. 48, 49. Springer, Berlin (2004)
Lazarsfeld, R., Mustaţă, M.: Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. 42(5), 783–835 (2009)
Prokhorov, Yu.G.: On the Zariski decomposition problem. Proc. Steklov Inst. Math. 240, 37–65 (2003)
Tian, G.: On Kähler–Einstein metrics on certain Kähler manifolds with $$C_1(M)>0$$. Invent. Math. 89(2), 225–246 (1987)
Tian, T.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101(1), 101–172 (1990)