Delivering MC3T3-E1 cells into injectable calcium phosphate cement through alginate-chitosan microcapsules for bone tissue engineering

Pengyan Qiao1, Fangfang Li1, Limin Dong2, Tao Xu3, Qing Xie4
1Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
2Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
3Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
4National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ambrosio, A.M., Sahota, J.S., Khan, Y., et al., 2001. A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. J. Biomed. Mater. Res., 58(3):295–301. [doi:10.1002/1097-4636(2001)58:3〈295::AID-JBM1020〉3.0.CO;2-8]

Brown, W., Chow, L.C., 1983. A new calcium-phosphate setting cement. J. Dent. Res., 62(SI):672.

Chen, W., Zhou, H., Weir, M.D., et al., 2012. Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration. Acta Biomater., 8(6): 2297–2306. [doi:10.1016/j.actbio.2012.02.021]

Chow, L.C., 2000. Calcium phosphate cements: chemistry, properties, and applications. In: Boston, M.A. (Ed.), Mineralization in Natural and Synthetic Biomaterials. Warrendale, Materials Research Society, USA, p.27–37.

de Ruijter, J.E., Brugge, P.J., Dieudonne, S.C., et al., 2001. Analysis of integrin expression in U2OS cells cultured on various calcium phosphate ceramic substrates. Tissue Eng., 7(3):279–289. [doi:10.1089/10763270152044143]

Deville, S., Saiz, E., Tomsia, A.P., 2006. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32):5480–5489. [doi:10.1016/j.biomaterials.2006.06.028]

Ding, S.J., 2007. Biodegradation behavior of chitosan/calcium phosphate composites. J. Non-Cryst. Solids, 353(24–25): 2367–2373. [doi:10.1016/j.jnoncrysol.2007.04.020]

Drury, J.L., Mooney, D.J., 2003. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24(24):4337–4351. [doi:10.1016/S0142-9612(03)00340-5]

Friedman, C.D., Costantino, P.D., Takagi, S., et al., 1998. BoneSource? hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J. Biomed. Mater. Res., 43(4):428–432. [doi:10.1002/(SICI)1097-4636(199824)43:4〈428::AIDJBM10〉3.0.CO;2-0]

Gombotz, W.R., Wee, S.F., 1998. Protein release from alginate matrices. Adv. Drug Deliv. Rev., 31(3):267–285. [doi:10.1016/S0169-409X(97)00124-5]

Habibovic, P., Barralet, J.E., 2011. Bioinorganics and biomaterials: bone repair. Acta Biomater., 7(8):3013–3026. [doi:10.1016/j.actbio.2011.03.027]

Hong, D., Chen, H.X., Yu, H.Q., et al., 2010. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells. Exp. Cell Res., 316(14):2291–2300. [doi:10.1016/j.yexcr.2010.05.011]

Klammert, U., Reuther, T., Jahn, C., et al., 2009. Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomater., 5(2):727–734. [doi:10.1016/j.actbio.2008.08.019]

Kretlow, J.D., Young, S., Klouda, L., et al., 2009. Injectable biomaterials for regenerating complex craniofacial tissues. Adv. Mater., 21(32–33):3368–3393. [doi:10.1002/adma.200802009]

Laurencin, C.T., Ambrosio, A.M., Borden, M.D., et al., 1999. Tissue engineering: orthopedic applications. Annu. Rev. Biomed. Eng., 1(1):19–46. [doi:10.1146/annurev.bioeng.1.1.19]

Lavik, E., Langer, R., 2004. Tissue engineering: current state and perspectives. Appl. Microbiol. Biotechnol., 65(1):1–8. [doi:10.1007/s00253-004-1580-z]

Lee, K.Y., Mooney, D.J., 2012. Alginate: properties and biomedical applications. Prog. Polym. Sci., 37(1):106–126. [doi:10.1016/j.progpolymsci.2011.06.003]

Mao, J.J., Giannobile, W.V., Helms, J.A., et al., 2006. Craniofacial tissue engineering by stem cells. J. Dent. Res., 85(11):966–979. [doi:10.1177/154405910608501101]

Markusen, J.F., Mason, C., Hull, D.A., et al., 2006. Behavior of adult human mesenchymal stem cells entrapped in alginate-GRGDY beads. Tissue Eng., 12(4):821–830. [doi:10.1089/ten.2006.12.821]

Miyamoto, Y., Ishikawa, K., Fukao, H., et al., 1995. In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials, 16(11):855–860. [doi:10.1016/0142-9612(95)94147-D]

Moreau, J.L., Xu, H.H., 2009. Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate-chitosan composite scaffold. Biomaterials, 30(14): 2675–2682. [doi:10.1016/j.biomaterials.2009.01.022]

Moreau, J.L., Weir, M.D., Xu, H.H., 2009. Self-setting collagen-calcium phosphate bone cement: mechanical and cellular properties. J. Biomed. Mater. Res. A, 91(2):605–613. [doi:10.1002/jbm.a.32248]

Muzzarelli, R.A., 2011. Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohyd. Polym., 83(4):1433–1445. [doi:10.1016/j.carbpol.2010.10.044]

Qiao, P., Wang, J., Xie, Q., et al., 2013. Injectable calcium phosphate-alginate-chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivo. Mat. Sci. Eng. C Mater., 33(8):4633–4639. [doi:10.1016/j.msec.2013.07.022]

Salgado, A.J., Coutinho, O.P., Reis, R.L., 2004. Bone tissue engineering: state of the art and future trends. Macromol. Biosci., 4(8):743–765. [doi:10.1002/mabi.200400026]

Shindo, M.L., Costantino, P.D., Friedman, C.D., et al., 1993. Facial skeletal augmentation using hydroxyapatite cement. Arch. Otolaryngol. Head Neck Surg., 119(2): 185–190. [doi:10.1001/archotol.1993.01880140069012]

Simon, C.J., Guthrie, W.F., Wang, F.W., 2004. Cell seeding into calcium phosphate cement. J. Biomed. Mater. Res. A, 68(4):628–639. [doi:10.1002/jbm.a.20008]

Taira, M., Nakao, H., Takahashi, J., et al., 2003. Effects of two vitamins, two growth factors and dexamethasone on the proliferation of rat bone marrow stromal cells and osteoblastic MC3T3-E1 cells. J. Oral Rehabil., 30(7):697–701. [doi:10.1046/j.1365-2842.2003.01118.x]

Taqieddin, E., Amiji, M., 2004. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules. Biomaterials, 25(10):1937–1945. [doi:10.1016/j.biomaterials.2003.08.034]

van den Vreken, N.M., Pieters, I.Y., Declercq, H.A., et al., 2010. Characterization of calcium phosphate cements modified by addition of amorphous calcium phosphate. Acta Biomater., 6(2):617–625. [doi:10.1016/j.actbio.2009.07.038]

Weir, M.D., Xu, H.H.K., 2010. Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair. Acta Biomater., 6(10):4118–4126. [doi:10.1016/j.actbio.2010.04.029]

Weir, M.D., Xu, H.H., Simon, C.J., 2006. Strong calcium phosphate cement-chitosan-mesh construct containing cell-encapsulating hydrogel beads for bone tissue engineering. J. Biomed. Mater. Res. A, 77(3):487–496. [doi:10.1002/jbm.a.30626]

Xie, H.G., Li, X.X., Lv, G.J., et al., 2010. Effect of surface wettability and charge on protein adsorption onto implantable alginate-chitosan-alginate microcapsule surfaces. J. Biomed. Mater. Res. A, 92(4):1357–1365. [doi:10.1002/jbm.a.32437]

Xie, J., Wang, C.H., 2007. Electrospray in the dripping mode for cell microencapsulation. J. Colloid Interface Sci., 312(2):247–255. [doi:10.1016/j.jcis.2007.04.023]

Xu, H.H., Carey, L.E., Simon, C.J., et al., 2007. Premixed calcium phosphate cements: synthesis, physical properties, and cell cytotoxicity. Dent. Mater., 23(4):433–441. [doi:10.1016/j.dental.2006.02.014]

Xu, H.H., Zhao, L., Weir, M.D., 2010. Stem cell-calcium phosphate constructs for bone engineering. J. Dent. Res., 89(12):1482–1488. [doi:10.1177/0022034510384623]

Zhao, L., Weir, M.D., Xu, H.H., 2010a. Human umbilical cord stem cell encapsulation in calcium phosphate scaffolds for bone engineering. Biomaterials, 31(14):3848–3857. [doi:10.1016/j.biomaterials.2010.01.093]

Zhao, L., Weir, M.D., Xu, H.H., 2010b. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials, 31(25):6502–6510. [doi:10.1016/j.biomaterials.2010.05.017]

Zhao, L., Tang, M., Weir, M.D., et al., 2011. Osteogenic media and rhBMP-2-induced differentiation of umbilical cord mesenchymal stem cells encapsulated in alginate microbeads and integrated in an injectable calcium phosphate-chitosan fibrous scaffold. Tissue Eng. Part A, 17(7-8):969–979. [doi:10.1089/ten.tea.2010.0521]

Zhou, H., Xu, H.H., 2011. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials, 32(30):7503–7513. [doi:10.1016/j.biomaterials.2011.06.045]

Zhou, H., Chen, W., Weir, M.D., et al., 2012. Biofunctionalized calcium phosphate cement to enhance the attachment and osteodifferentiation of stem cells released from fast-degradable alginate-fibrin microbeads. Tissue Eng. Part A, 18(15–16):1583–1595. [doi:10.1089/ten.tea.2011.0604]