Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phác thảo quá trình tổng hợp xanh, không dùng xúc tác của một loại thực phẩm chức năng phổ biến methylsulfonylmethane (MSM) trong dòng chảy liên tục
Tóm tắt
Một quá trình tổng hợp xanh, và có khả năng mở rộng liên tục cho một loại sulfone chứa thực phẩm chức năng phổ biến, methylsulfonylmethane (MSM), đã được trình bày trên nền tảng phản ứng ống Vapourtec thông qua quá trình oxy hóa dimethyl sulfoxide không sử dụng chất xúc tác kim loại, có sự tham gia của hydrogen peroxide. Dưới các điều kiện tối ưu, MSM có thể được thu nhận với hiệu suất >85% và độ tinh khiết >99% với năng suất đạt 23,6 g/h chỉ bằng cách làm lạnh hỗn hợp phản ứng thu được tại đầu ra.
Từ khóa
#methylsulfonylmethane #MSM #thực phẩm chức năng #tổng hợp xanh #oxy hóa #dimethyl sulfoxide #hydrogen peroxide #năng suất caoTài liệu tham khảo
Feng M, Tang B, Liang SH, Jiang X (2016) Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr Top Med Chem 16:1200–1216. https://doi.org/10.2174/1568026615666150915111741
Liu N-W, Liang S, Manolikakes G (2016) Recent advances in the synthesis of sulfones. Synthesis 48:1939–1973. https://doi.org/10.1055/s-0035-1560444
Butawan M, van der Merwe M; Benjamin RL, Bloomer RJ (2019) "Methylsulfonylmethane: Antiinflammatory actions and usage for arthritic conditions" In: Watson, RR; Preedy, VR (eds.) Bioactive food as dietary interventions for arthritis and related inflammatory diseases, 2nd edn. Academic Press, pp. 553–573. https://doi.org/10.1016/B978-0-12-813820-5.00032-5
Butawan M, Benjamin RL, Bloomer RJ (2017) Methylsulfonylmethane: applications and safety of a novel dietary supplement. Nutrients 9:290/1–290/21. https://doi.org/10.3390/nu9030290
Methylsulfonylmethane (MSM) Market – Growth, Future Prospects & Competitive Analysis 2016–2024. https://www.credenceresearch.com/report/methylsulfonylmethane-market. Accessed 8 Mar 2021
Gamelas CA, Lourenço T, da Costa AP, Simplício AL, Royo B, Romão CC (2008) Selective and mild oxidation of sulfides to sulfoxides or sulfones using H2O2 and Cp′Mo(CO)3Cl as catalysts. Tetrahedron Lett 49:4708–4712. https://doi.org/10.1016/j.tetlet.2008.05.126
Cheng S, Wei W, Zhang X, Yu H, Huang M, Kazemnejadi M (2020) A new approach to large scale production of dimethyl sulfone: a promising and strong recyclable solvent for ligand-free Cu-catalyzed C–C cross-coupling reactions. Green Chem 22:2069–2076. https://doi.org/10.1039/C9GC04374H
Laudadio G, Straathof NJW, Lanting MD, Knoops B, Hessel V, Noël T (2017) An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chem 19:4061–4066. https://doi.org/10.1039/C7GC01973D
Nobuyuki M, Katsuhiro S (2018) Method for producing sulfone compound. JP Patent Application 2018–135273 A, Aug 30, 2018; (2018) Chem Abstr 2018:1609629
Jones C, Friedrich JD, Paschal JC, Alwis WK (2003) Method for making dimethyl sulfone from dimethyl sulfoxide and hydrogen peroxide. US Patent 6,552,231, Apr 22, 2003; (2002) Chem Abstr 2002:31976
Agosti A, Bertolini G, Bruno G, Lautz C, Glarner T, Deichtmann W (2017) Handling hydrogen peroxide oxidations on a large scale: synthesis of 5-Bromo-2-nitropyridine. Org Process Res Dev 21:451–459. https://doi.org/10.1021/acs.oprd.6b00433
Zhang Y, Xue P, Xiaodan D, Liu H, Shen Y, Shenghu Y, Liu J, Shen J, Gu S, Ma X (2018) Method for continuously synthesizing dimethyl sulfone. CN Patent Application 108840809A, Nov 20, 2018; (2018) Chem Abstr 2018:2223773
Hessel V, Hofmann C, Löwe H, Meudt A, Scherer S, Schönfeld F, Werner B (2004) Selectivity gains and energy savings for the industrial phenyl boronic acid process using micromixer/tubular reactors. Org Process Res Dev 8:511–523. https://doi.org/10.1021/op0341768
Comparisons of response surface designs. https://www.itl.nist.gov/div898/handbook/pri/section3/pri3363.htm. Accessed 30 Apr 2021
Rakić T, Kasagić-Vujanović I, Jovanović M, Jančić-Stojanović B, Ivanović D (2014) Comparison of full factorial design, central composite design, and box-behnken design in chromatographic method development for the determination of fluconazole and its impurities. Anal Lett 47:1334–1347. https://doi.org/10.1080/00032719.2013.867503
Taylor CJ, Baker A, Chapman MR, Reynolds WR, Jolley KE, Clemens G, Smith GE, Blacker AJ, Chamberlain TW, Christie SDR, Taylor BA, Bourne RA (2021) Flow chemistry for process optimisation using design of experiments. J Flow Chem 11:75–86. https://doi.org/10.1007/s41981-020-00135-0