Phác thảo quá trình tổng hợp xanh, không dùng xúc tác của một loại thực phẩm chức năng phổ biến methylsulfonylmethane (MSM) trong dòng chảy liên tục

Journal of Flow Chemistry - Tập 12 - Trang 1-7 - 2021
Chinmay A. Shukla1, Bantu Udaykumar1, Y. Saisivanarayana1, Arsh Ismaili1, T Haripriya1, Manish M. Shinde2, Srinivasan Neti3, Maheshkumar Uppada1, Vishnuvardhana Eda3, Saikat Sen3, Srinivas Oruganti1,2,3
110X Chemical Process Automation Laboratory, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
2Flow Chemistry Technology Hub, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
3Centre for Process Research and Innovation, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India

Tóm tắt

Một quá trình tổng hợp xanh, và có khả năng mở rộng liên tục cho một loại sulfone chứa thực phẩm chức năng phổ biến, methylsulfonylmethane (MSM), đã được trình bày trên nền tảng phản ứng ống Vapourtec thông qua quá trình oxy hóa dimethyl sulfoxide không sử dụng chất xúc tác kim loại, có sự tham gia của hydrogen peroxide. Dưới các điều kiện tối ưu, MSM có thể được thu nhận với hiệu suất >85% và độ tinh khiết >99% với năng suất đạt 23,6 g/h chỉ bằng cách làm lạnh hỗn hợp phản ứng thu được tại đầu ra.

Từ khóa

#methylsulfonylmethane #MSM #thực phẩm chức năng #tổng hợp xanh #oxy hóa #dimethyl sulfoxide #hydrogen peroxide #năng suất cao

Tài liệu tham khảo

Feng M, Tang B, Liang SH, Jiang X (2016) Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr Top Med Chem 16:1200–1216. https://doi.org/10.2174/1568026615666150915111741 Liu N-W, Liang S, Manolikakes G (2016) Recent advances in the synthesis of sulfones. Synthesis 48:1939–1973. https://doi.org/10.1055/s-0035-1560444 Butawan M, van der Merwe M; Benjamin RL, Bloomer RJ (2019) "Methylsulfonylmethane: Antiinflammatory actions and usage for arthritic conditions" In: Watson, RR; Preedy, VR (eds.) Bioactive food as dietary interventions for arthritis and related inflammatory diseases, 2nd edn. Academic Press, pp. 553–573. https://doi.org/10.1016/B978-0-12-813820-5.00032-5 Butawan M, Benjamin RL, Bloomer RJ (2017) Methylsulfonylmethane: applications and safety of a novel dietary supplement. Nutrients 9:290/1–290/21. https://doi.org/10.3390/nu9030290 Methylsulfonylmethane (MSM) Market – Growth, Future Prospects & Competitive Analysis 2016–2024. https://www.credenceresearch.com/report/methylsulfonylmethane-market. Accessed 8 Mar 2021 Gamelas CA, Lourenço T, da Costa AP, Simplício AL, Royo B, Romão CC (2008) Selective and mild oxidation of sulfides to sulfoxides or sulfones using H2O2 and Cp′Mo(CO)3Cl as catalysts. Tetrahedron Lett 49:4708–4712. https://doi.org/10.1016/j.tetlet.2008.05.126 Cheng S, Wei W, Zhang X, Yu H, Huang M, Kazemnejadi M (2020) A new approach to large scale production of dimethyl sulfone: a promising and strong recyclable solvent for ligand-free Cu-catalyzed C–C cross-coupling reactions. Green Chem 22:2069–2076. https://doi.org/10.1039/C9GC04374H Laudadio G, Straathof NJW, Lanting MD, Knoops B, Hessel V, Noël T (2017) An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chem 19:4061–4066. https://doi.org/10.1039/C7GC01973D Nobuyuki M, Katsuhiro S (2018) Method for producing sulfone compound. JP Patent Application 2018–135273 A, Aug 30, 2018; (2018) Chem Abstr 2018:1609629 Jones C, Friedrich JD, Paschal JC, Alwis WK (2003) Method for making dimethyl sulfone from dimethyl sulfoxide and hydrogen peroxide. US Patent 6,552,231, Apr 22, 2003; (2002) Chem Abstr 2002:31976 Agosti A, Bertolini G, Bruno G, Lautz C, Glarner T, Deichtmann W (2017) Handling hydrogen peroxide oxidations on a large scale: synthesis of 5-Bromo-2-nitropyridine. Org Process Res Dev 21:451–459. https://doi.org/10.1021/acs.oprd.6b00433 Zhang Y, Xue P, Xiaodan D, Liu H, Shen Y, Shenghu Y, Liu J, Shen J, Gu S, Ma X (2018) Method for continuously synthesizing dimethyl sulfone. CN Patent Application 108840809A, Nov 20, 2018; (2018) Chem Abstr 2018:2223773 Hessel V, Hofmann C, Löwe H, Meudt A, Scherer S, Schönfeld F, Werner B (2004) Selectivity gains and energy savings for the industrial phenyl boronic acid process using micromixer/tubular reactors. Org Process Res Dev 8:511–523. https://doi.org/10.1021/op0341768 Comparisons of response surface designs. https://www.itl.nist.gov/div898/handbook/pri/section3/pri3363.htm. Accessed 30 Apr 2021 Rakić T, Kasagić-Vujanović I, Jovanović M, Jančić-Stojanović B, Ivanović D (2014) Comparison of full factorial design, central composite design, and box-behnken design in chromatographic method development for the determination of fluconazole and its impurities. Anal Lett 47:1334–1347. https://doi.org/10.1080/00032719.2013.867503 Taylor CJ, Baker A, Chapman MR, Reynolds WR, Jolley KE, Clemens G, Smith GE, Blacker AJ, Chamberlain TW, Christie SDR, Taylor BA, Bourne RA (2021) Flow chemistry for process optimisation using design of experiments. J Flow Chem 11:75–86. https://doi.org/10.1007/s41981-020-00135-0