Xóa bỏ tiểu đơn vị HCN1 của các kênh ion hoạt hóa hyperpolarization ở chuột làm suy giảm phản xạ giật mình vì âm thanh, phát hiện khoảng trống và định vị không gian

James R. Ison1,2, Paul D. Allen3, Donata Oertel4
1Department of Brain and Cognitive Sciences, University of Rochester, Rochester, USA
2Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
3Department of Otolaryngology, University of Rochester Medical Center, Rochester, USA
4Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, USA

Tóm tắt

Đã từng đề xuất rằng độ nhạy về thời gian và không gian cao của các thính giả con người và động vật được kiểm tra trong phòng thí nghiệm thính giác phụ thuộc một phần vào hằng số thời gian ngắn của các tế bào thần kinh thính giác có khả năng duy trì hoặc tăng cường thông tin được truyền tải qua thời gian bắn của các sợi thần kinh thính giác. Chúng tôi đã kiểm tra giả thuyết này trong một loạt các thí nghiệm in vivo, dựa trên các thí nghiệm trước đó in vitro cho thấy rằng hằng số thời gian tế bào thần kinh tăng lên trong các lát não thân khi các kênh HCN1 bị chặn hoặc trong các lát thu được từ chuột đột biến Hcn1 −/− null. Chúng tôi đã so sánh chuột Hcn1 −/− và Hcn1 +/+ trên các phản ứng thính giác não thân (ABRs) và các biện pháp hành vi. Những biện pháp này bao gồm sự tích lũy thời gian cho phản ứng giật mình do âm thanh (ASRs), sự trầm trọng của ASR do tiếng ồn ngắt, và sự ức chế ASR do khoảng trống trong tiếng ồn và sự dịch chuyển nguồn ồn dọc theo phương ngang như những biện pháp đánh giá độ nhạy về thời gian và không gian. Chuột Hcn1 −/− có ngưỡng ABR ít nhạy hơn ở tần số 32 và 48 kHz. Nhiệm vụ sóng P1b của chúng bị trì hoãn và sóng 2 vắng mặt trong dạng sóng 16 kHz/90 SPL, cho thấy rằng các nhóm tế bào thần kinh ở đầu đường dẫn thính giác bị trì hoãn và bắn không đồng bộ. Mức độ ASR cơ bản thấp hơn ở chuột Hcn1 −/−, sự tích lũy thời gian bị trì hoãn, hằng số thời gian cho sự trầm trọng ASR do tiếng ồn ngắt cao hơn, và độ nhạy của chúng đối với khoảng trống ngắn và độ nhạy về không gian bị giảm sút. Các kênh HCN1 cũng hiện diện trong các tế bào thần kinh tiền đình, da, tiêu hóa và tim, có thể đóng góp vào những thiếu sót trong độ nhạy về không gian và có thể trong mức độ ASR.

Từ khóa

#HCN1 #phản xạ giật mình #phát hiện khoảng trống #định vị không gian #tế bào thần kinh thính giác

Tài liệu tham khảo

Acosta C, McMullan S, Djouhri L, Gao L, Watkins R, Berry C, Dempsey K, Lawson SN (2012) HCN1 and HCN2 in rat DRG neurons: levels in nociceptors and non-nociceptors, NT3-dependence and influence of CFA-induced skin inflammation on HCN2 and NT3 expression. PLoS ONE [Electronic Resource] 7(12):e50442 e5044 Allen PD, Ison JR (2010) Sensitivity of the mouse to changes in azimuthal sound location: effects of angular separation, spectral composition, and sound level on prepulse inhibition of the acoustic startle reflex. Beh Neurosci 124:265–277 Allen PD, Ison JR (2012) Kcna1 gene deletion lowers the behavioral sensitivity of mice to small changes in sound location and increases asynchronous brainstem auditory evoked potentials, but does not affect hearing thresholds. J Neurosci 32:2538–2543 Allen PD, Schmuck N, Ison JR, Walton JP (2008) Kv1.1 channel subunits are not necessary for high temporal acuity in behavioral and electrophysiological gap detection. Hear Res 246:52–58 Bakondi G, Por A, Kovacs I, Szucs G, Rusznak Z (2009) Hyperpolarization-activated, cyclic nucleotide-gated, cation non-selective channel subunit expression pattern of guinea-pig spiral ganglion cells. Neurosci 158:1469–1477 Bal R, Oertel D (2000) Hyperpolarization-activated, mixed-cation current (Ih) in octopus cells of the mammalian cochlear nucleus. J Neurophysiol 84:806–817 Bal R, Oertel D (2001) Potassium currents in octopus cells of the mammalian cochlear nuclei. J Neurophysiol 86:2299–2311 Banks MI, Pearce RA, Smith PH (1993) Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem. J Neurophysiol 70:1420–1432 Barsz K, Ison JR, Snell KB, Walton JP (2002) Behavioral and neural measures of auditory temporal acuity in aging humans and mice. Neurobiol Aging 23:565–578 Buchtel HA, Stewart JD (1989) Auditory agnosia: apperceptive or associative disorder? Brain Lang 37:12–25 Cao XJ, Oertel D (2011) The magnitudes of hyperpolarization-activated and low-voltage-activated potassium currents co-vary in neurons of the ventral cochlear nucleus. J Neurophysiol 106:630–640 Chen C (1997) Hyperpolarization-activated current (Ih) in primary auditory neurons. Hear Res 110:179–190 Chen X, Shu S, Schwartz LC, Sun C, Kapur J, Bayliss DA (2010) Homeostatic regulation of synaptic excitability: tonic GABA(A) receptor currents replace I(h) in cortical pyramidal neurons of HCN1 knock-out mice. J Neurosci 30:2611–2622 Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacol 132:107–124 Davis SM, McCroskey RL (1980) Auditory fusion in children. Child Dev 51:75–80 Dean KF, Sheets LP, Crofton KM, Reiter LW (1990) The effect of age and experience on inhibition of the acoustic startle response by gaps in background noise. Psychobiol 18:89–95 Dodson PD, Barker MC, Forsythe ID (2002) Two heteromeric Kv1 potassium channels differentially regulate action potential firing. J Neurosci 22:6953–6961 Exner S (1875) Experimentelle untersuchung der einfachsten psychischen processe. Pflugers Arciv 11:403–432 (described in W. James, p613-614, Principles of psychology, Vol 1, 1890) Fechter LD, Young JS (1983) Discrimination of auditory from nonauditory toxicity by reflex modulation audiometry: effects of triethyltin. Tox Appl Pharmacol 70:216–227 Felix RA, Fridberger A, Leijon S, Berrebi AS, Magnusson AK (2011) Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus. J Neurosci 31(35):12566–12578 Felix RA II, Magnusson AK, Berrebi AS (2014) The superior paraolivary nucleus shapes temporal response properties of neurons in the inferior colliculus. Brain Struct Funct. doi:10.1007/s00429-014-0815-8 Fettiplace R, Kim KX (2014) The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev 94:951–986 Gessele N, Garcia-Pino E, Omerbašić D, Park TJ, Koch U (2016) Structural changes and lack of HCN1 channels in the binaural auditory brainstem of the naked mole-rat (Heterocephalus glaber). PLoS One 11(1):e0146428. doi:10.1371/journalpone0146428 Golding NL, Oertel D (2012) Synaptic integration in dendrites: exceptional need for speed. J Physiol 590:5563–5569 Gomez-Nieto R, Horta-Junior JA, Castellano O, Millian-Morell L, Rubio ME, Lopez DE (2014) Origin and function of short-latency inputs to the neural substrates underlying the acoustic startle reflex. Front Neurosci 8:216 Heffner RS, Heffner HE (1993) Degenerate hearing and sound localization in naked mole rats (Heterocephalus glaber), with an overview of central auditory structures. J Comp Neurol 331:418–433 Henry KR (1979) Auditory brainstem volume-conducted responses: origins in the laboratory mouse. J Am Aud Soc 4:173–178 Horwitz GC, Risner-Janiczek JR, Jones SM, Holt JR (2011) HCN channels expressed in the inner ear are necessary for normal balance function. J Neurosci 31:16814–16825 Ison JR, Allen PD (2012) Deficits in responding to brief noise offsets in Kcna1−/− mice reveal a contribution of this gene to precise temporal processing seen previously only for stimulus onsets. JARO 13:351–358 James W (1890) Principles of psychology, Vol 1. Henry Holt and Company, New York Kanold PO, Young ED (2001) Proprioceptive information from the pinna provides somatosensory input to cat dorsal cochlear nucleus. J Neurosci 21:7848–7858 Karcz A, Allen PD, Walton J, Ison JR, Kopp-Scheinpflug C (2015) Auditory deficits of Kcna1 deletion are similar to those of a monaural hearing loss. Hear Res 321:45–51 Khurana S, Remme MWH, Rinzel J, Golding NL (2011) Dynamic interaction of Ih and IK-LVA during trains of synaptic potentials in principal neurons of the medial superior olive. J Neurosci 31(24):8936–8947 Khurana S, Liu Z, Lewis AS, Rosa K, Chetkovich D, Golding NL (2012) An essential role for modulation of hyperpolarization-activated current in the development of binaural temporal precision. J Neurosci 32:2814–2823 Kim YH, Holt JR (2013) Functional contributions of HCN channels in the primary auditory neurons of the mouse inner ear. J Gen Physiol 142:207–223 Koch U, Braun M, Kapfer C, Grothe B (2004) Distribution of HCN1 and HCN2 in rat auditory brainstem nuclei. Eur J Neurosci 20:79–91 Kopp-Scheinpflug C, Tozer AJ, Robinson SW, Tempel BL, Hennig MH, Forsythe ID (2011) The sound of silence: ionic mechanisms encoding sound termination. Neuron 71:911–925 Lauer AM, Slee SJ, May BF (2011) Acoustic basis of directional acuity in laboratory mice. JARO 12:633–645 Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci 11:2865–2880 Marsh R, Hoffman HS, Stitt CL (1973) Temporal integration in the acoustic startle reflex of the rat. J Comp Physiol Psychol 82:507–511 Melcher JR, Kiang NY (1996) Generators of the brainstem auditory evoked potential in cat. III: identified cell populations. Hear Res 93:52–71 Michalewski HJ, Starr A, Nguyen TT, Kong YY, Zeng FG (2005) Auditory temporal processes in normal-hearing individuals and in patients with auditory neuropathy. Clin Neurophysiol 116:669–680 Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246 Mo ZL, Davis RL (1997) Heterogeneous voltage dependence of inward rectifier currents in spiral ganglion neurons. J Neurophysiol 78:3019–3027 Moosmang S, Biel M, Hofmann F, Ludwig A (1999) Differential distribution of four hyperpolarization-activated cation channels in mouse brain. Biol Chem 380:975–980 Moosmang S, Stieber J, Zong X, Biel M, Hofmann F, Ludwig A (2001) Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur J Biochem 286:1646–1652 Newlands SD, Perachio AA (2003) Central projections of the vestibular nerve: a review and single fiber study in the Mongolian gerbil. Brain Res Bull 60:475–495 Oertel D, Shatadal S, Cao XJ (2008) In the ventral cochlear nucleus Kv1.1 and subunits of HCN1 are colocalized at surfaces of neurons that have low-voltage-activated and hyperpolarization-activated conductances. Neurosci 154:77–86 Ramakrishnan NA, Drescher MJ, Khan KM, Hatfield JS, Drescher DG (2012) HCN1 and HCN2 proteins are expressed in cochlear hair cells: HCN1 can form a ternary complex with protocadherin 15 CD3 and F-actin-binding filamin A or can interact with HCN2. J Biol Chem 287:37628–37646 Sanes DH, Walsh EJ (1998) The development of central auditory processing. In: Rubel EW, Popper AN, Fay RR (eds) Development of the auditory system. Springer, NY, pp. 271–314 Shore SE, Zhou J (2006) Somatosensory influence on the cochlear nucleus and beyond. Hear Res:216–217 90-99 Snell KB, Mapes FM, Hickman ED, Frisina DR (2002) Word recognition in competing babble and the effects of age, temporal processing, and absolute sensitivity. J Acoust Soc Am 112:720–727 Starr A, Zaaroor M (1990) Eighth nerve contributions to cat auditory brainstem responses (ABR). Hear Res 48:151–169 Wahl-Schott C, Biel M (2009) HCN channels: structure, cellular regulation and physiological function. Cell Mol Life Sci 66:470–494 Walton JP, Frisina RD, Ison JR, O'Neill WE (1997) Neural correlates of behavioral gap detection in the inferior colliculus of the young CBA mouse. J Comp Physiol A 181:161–176 Wang Y, Manis BP (2008) Short-term synaptic depression and recovery at the mature mammalian endbulb of Held synapse in mice. J Neurophysiol 100:1255–1264 Yang H, Xu-Friedman MA (2009) Impact of synaptic depression on spike timing at the endbulb of Held. J Neurophysiol 102:1699–1710 Yi E, Roux I, Glowatzki E (2010) Dendritic HCN channels shape excitatory postsynaptic potentials at the inner hair cell afferent synapse in the mammalian cochlea. J Neurophysiol 103:2532–2543 Yoshida N, Hequembourg SJ, Atencio CA, Rosowski JJ, Liberman MC (2000) Acoustic injury in mice: 129/SvEv is exceptionally resistant to noise-induced hearing loss. Hear Res 141:97–106 Zeng FG, Kong YY, Michalewski MJ, Starr A (2005) Perceptual consequences of disrupted auditory nerve activity. J Neurophysiol 93:3050–3063 Zhang W, Salvi RJ, Saunders SS (1990) Neural correlates of gap detection in auditory nerve fibers of the chinchilla. Hear Res 46:181–200