Ký ức chậm đối với các kích thích thị giác phức tạp không được cải thiện nhờ sự phân tán trong quá trình mã hóa
Tóm tắt
Từ khóa
Tài liệu tham khảo
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Psychology of learning and motivation (Vol. 2, issue C, pp. 89–195). Elsevier. https://doi.org/10.1016/S0079-7421(08)60422-3
Baddeley, A. D., Hitch, G. J., Quinlan, P. T., Bowes, L., & Stone, R. (2016). Doors for memory: A searchable database. Quarterly Journal of Experimental Psychology, 69(11), 2111–2118. https://doi.org/10.1080/17470218.2015.1087582
Baribault, B., Donkin, C., Little, D. R., Trueblood, J. S., Oravecz, Z., Van Ravenzwaaij, D., ..., Vandekerckhove, J. (2018). Metastudies for robust tests of theory. Proceedings of the National Academy of Sciences, 115(11), 2607–2612.
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001
Barry, C., Johnston, R. A., & Scanlan, L. C. (1998). Are faces “special” objects? Associative and Sem antic priming of face and object recognition and naming. The Quarterly Journal of Experimental Psychology Section A, 51(4), 853–882. https://doi.org/10.1080/713755783
Bartsch, L. M., Loaiza, V. M., & Oberauer, K. (2019). Does limited working memory capacity underlie age differences in associative long-term memory? Psychology and Aging, 34(2), 268–281. https://doi.org/10.1037/pag0000317
Bartsch, L. M., Singmann, H., & Oberauer, K. (2018). The effects of refreshing and elaboration on working memory performance , and their contributions to long-term memory formation. Memory & Cognition, 46(5). https://doi.org/10.3758/s13421-018-0805-9
Bartsch, L. M., Souza, A., & Oberauer, K. (2022). The benefits of memory control processes in working memory: Comparing effects of self-reported and instructed strategy use. PsyArXiv. https://doi.org/10.31234/osf.Io/fzmr3
Burke, M. R., Poyser, C., & Schiessl, I. (2015). Age-related deficits in visuospatial memory are due to changes in preparatory set and eye–hand coordination. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 70(5), 682–690.
Bürkner, P.-C. (2017). Brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28.
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. https://doi.org/10.1017/S0140525X01003922
Cowan, N. (2017). The many faces of working memory and short-term storage. Psychonomic Bulletin & Review, 24(4), 1158–1170.
Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671–684. https://doi.org/10.1016/S0022-5371(72)80001-X
Craik, F. I. M., & Tulving, E. (1975). Depth of processing and the retention of words in Eisodic memory. Journal of Experimental Psychology: General, 104(3), 268–294.
Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin and Review, 12(6), 1127–1133. https://doi.org/10.3758/BF03206454
Forsberg, A., Guitard, D., & Cowan, N. (2020). Working memory limits severely constrain long-term retention. Psychonomic Bulletin and Review. https://doi.org/10.3758/s13423-020-01847-z
Fukuda, K., & Vogel, E. K. (2019). Visual short-term memory capacity predicts the “bandwidth” of visual long-term memory encoding. Memory & Cognition, 47(8), 1481–1497.
Gorgoraptis, N., Catalao, R. F. G., Bays, P. M., & Husain, M. (2011). Dynamic updating of working memory resources for visual objects. Journal of Neuroscience, 31(23), 8502–8511.
Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. Wiley.
Hartshorne, J. K., & Makovski, T. (2019). The effect of working memory maintenance on long-term memory. Memory & Cognition, 47(4), 749–763.
Jarjat, G., Hoareau, V., Plancher, G., Hot, P., Lemaire, B., & Portrat, S. (2018). What makes working memory traces stable over time? Annals of the New York Academy of Sciences, 1424(1), 149–160.
Kahana, M. J., & Sekuler, R. (2002). Recognizing spatial patterns: A noisy exemplar approach. Vision Research, 42(18), 2177–2192.
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/10.1080/01621459.1995.10476572
Krasnoff, J., & Souza, A. S. (2021). I remember it now, so I’ll remember it later: Working memory representations guide inaccurate predictions of future memory performance PsyArXiv.
Lewandowsky, S., Geiger, S. M., Morrell, D. B., & Oberauer, K. (2010). Turning simple span into complex span: Time for decay or interference from distractors? Journal of experimental psychology. Learning, Memory, and Cognition, 36(4), 958–978. https://doi.org/10.1037/a0019764
Loaiza, V. M., Duperreault, K. A., Rhodes, M. G., & Mccabe, D. P. (2015). Long-term semantic representations moderate the effect of attentional refreshing on episodic memory. Psychonomic Bulletin & Review, 22(1), 274–280. https://doi.org/10.3758/s13423-014-0673-7
Loaiza, V. M., & Lavilla, E. T. (2021). Elaborative strategies contribute to the long-term benefits of time in working memory. Journal of Memory and Language, 117(December 2020), 104205. https://doi.org/10.1016/j.jml.2020.104205
Loaiza, V. M., & Mccabe, D. P. (2012). Temporal–contextual processing in working memory: Evidence from delayed cued recall and delayed free recall tests. Memory & Cognition, 40(2), 191–203. https://doi.org/10.3758/s13421-011-0148-2
Loaiza, V. M., & Souza, A. S. (2021). Active maintenance in working memory reinforces bindings for future retrieval from long-term episodic memory PsyArXiv.
McCabe, D. P. (2008). The role of covert retrieval in working memory span tasks: Evidence from delayed recall tests. Journal of Memory and Language, 58(2), 480–494. https://doi.org/10.1016/j.jml.2007.04.004
Mercer, T., & Duffy, P. (2015). Rapid communication: The loss of residual visual memories over the passage of time. SAGE Publications Sage UK.
Musfeld, P., Souza, A. S., & Oberauer, K. (in press). Testing expectations and retrieval practice modulate repetition learning of visuo-spatial arrays. Journal of Experimental Psychology: Learning, Memory, and Cognition. https://doi.org/10.1037/xlm0001298
Oberauer, K. (2009). Chapter 2 Design for a Working Memory. Psychology of Learning and Motivation - Advances in Research and Theory, 51, 45–100. https://doi.org/10.1016/S0079-7421(09)51002-X
Oberauer, K. (2022). When does working memory get better with longer time? Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(12), 1754–1774. https://doi.org/10.1037/xlm0001199
Oberauer, K., & Greve, W. (2021). Intentional remembering and intentional forgetting in working and long-term memory. General. https://doi.org/10.1037/xge0001106
Oberauer, K., Jones, T., & Lewandowsky, S. (2015). The Hebb repetition effect in simple and complex memory span. Memory & Cognition, 43, 852–865.
Oberauer, K., & Lewandowsky, S. (2016). Control of information in working memory: Encoding and removal of distractors in the complex-span paradigm. Cognition, 156, 106–128.
Popov, V., & Dames, H. (2022). Intent matters : Resolving the intentional vs incidental learning paradox in episodic long-term memory (pp. 1–53). Journal of Experimental Psychology.
R Core Team. (2022). R: A language and environment for statistical computing (p. https://www.R-project.org/)
Ricker, T. J., & Cowan, N. (2010). Loss of visual working memory within seconds: The combined use of refreshable and non-refreshable features. Journal of experimental psychology: Learning, memory, and cognition, 36(6), 1355.
Ricker, T. J., Spiegel, L. R., & Cowan, N. (2014). Time-based loss in visual short-term memory is from trace decay, not temporal distinctiveness. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(6), 1510.
Rouder, J. N. (2014). Optional stopping: No problem for Bayesians. Psychonomic Bulletin & Review, 21(2), 301–308.
Sakai, K., & Inui, T. (2002). A feature-segmentation model of short-term visual memory. Perception, 31(5), 579–589.
Souza, A. S., & Oberauer, K. (2017). Time to process information in working memory improves episodic memory. Journal of Memory and Language, 96, 155–167. https://doi.org/10.1016/j.jml.2017.07.002
Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of Memory (pp. 381–403). Academic Press.
Vallar, G., & Baddeley, A. D. (1982). Short-term forgetting and the articulatory loop. The Quarterly Journal of Experimental Psychology Section A, 34(1), 53–60.
Vuorre, M. (2017). Bayesian Estimation of Signal Detection Models. https://vuorre.netlify.app/posts/2017-10-09-bayesian-estimation-of-signal-detection-theory-models
Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: A tutorial on the savage-dickey method. Cognitive Psychology, 60(3), 158–189. https://doi.org/10.1016/j.cogpsych.2009.12.001
Wixted, J. T. (2020). The forgotten history of signal detection theory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(2), 201.