Delay Equations with Non-negativity Constraints Driven by a Hölder Continuous Function of Order $\beta \in \left(\frac13,\frac12\right)$

Springer Science and Business Media LLC - Tập 41 - Trang 117-141 - 2013
Mireia Besalú1, David Márquez-Carreras1, Carles Rovira1
1Facultat de Matemàtiques, Universitat de Barcelona, Barcelona, Spain

Tóm tắt

In this note we prove an existence and uniqueness result of solution for multidimensional delay differential equations with normal reflection and driven by a Hölder continuous function of order $\beta \in (\frac13,\frac12)$ . We also obtain a bound for the supremum norm of this solution. As an application, we get these results for stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H $\in (\frac13,\frac12)$ .

Tài liệu tham khảo

Besalú, M., Nualart, D.: Estimates for the solution to Stochastic differential equations driven by a fractional Brownian motion with Hurst parameter \(H \in (\frac13,\frac12)\). Stoch. Dyn. 12, 243–263 (2011) Besalú, M., Rovira, C.: Stochastic delay equations with non-negativity constraints driven by a fractional Brownian motion. Bernoulli 18, 24–45 (2012) Coutin, L., Lejay, A.: Semi-martingales and rough paths theory. Electron. J. Probab. 10, 761–785 (2005) Ferrante, M., Rovira, C.: Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1/2. Bernoulli 12, 85–100 (2006) Ferrante, M., Rovira, C.: Convergence of delay differential equations driven by fractional Brownian motion. J. Evol. Equ. 10, 761–783 (2010) Friz, P., Victoir, N.: Multidimensional stochastic processes as rough paths. Theory and applications. Cambridge Studies in Advanced Mathematics, vol. 120. Cambridge University Press, Cambridge (2010) Friz, P., Victoir, N.: Approximations of the Brownian rough path with applications to stochastic analysis. Ann. Inst. H. Poincaré 41, 703–724 (2005) Friz, P.: Continuity of the Itô-map for Hölder rough paths with applications to the support theorem in Hölder norm. In: Probability and Partial Differential Equations in Modern Applied Mathematics, pp. 117–135. IMA Vol. Math. Appl., vol. 140. Springer, New York (2005) Gubinelli, M.: Controlling rough paths. J. Funct. Anal. 216, 86–140 (2004) Hu, Y., Nualart, D.: Rough path analysis via fractional calculus. Trans. Am. Math. Soc. 361, 2689–2718 (2009) Kinnally, M.S., Williams, J.: On Existence and uniqueness of stationary distributions for stochastic delay differential equations with non-negativity constraints. Electron. J. Probab. 15, 409–451 (2010) León, J., Tindel, S.: Malliavin calculus for fractional delay equations. J. Theor. Probab. 25, 854–889 (2012) Lejay, A.: An introduction to rough paths. Lect. Notes Math. 1832, 1–59 (2003) Lyons, T.J.: Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14, 215–310 (1998) Lyons, T.J., Caruana, M., Lévy, T.: Differential equations driven by rough paths. In: Lecture Notes in Math. vol. 1908. Springer-Verlag (2007) Lyons, T.J., Qian, Z.: System Control and Rough Paths. Clarendon Press, Oxford (2002) Ledoux, M., Qian, Z., Zhang, T.: Large deviations and support theorem for diffusion processes via rough paths. Stoch. Process. Appl. 102, 265–283 (2002) Neuenkirch, A., Nourdin, I., Tindel, S.: Delay equations driven by rough paths. Electron. J. Probab. 13, 2031–2068 (2008) Nualart, D., Răşcanu, A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53, 55–81 (2002) Russo, F., Vallois, P.: Forward, backward and symmetric stochastic integration. Probab. Theory Relat. Fields 97, 403–421 (1993) Tindel, S., Torrecilla, I.: Some differential systems driven by a fBm with Hurst parameter greater than 1/4. In: Stochastic Analysis and Related Topics, pp. 169–202. Proceedings in Mathematics and Statistics, vol. 22. Springer (2012) Zähle, M.: Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Relat. Fields 111, 333–374 (1998)