Delamination analysis in single-point incremental forming of steel/steel bi-layer sheet metal

Malik Hassan1, Ghulam Hussain1, Muhammad Ilyas1, Aaqib Ali1
1Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wong CC, Danno A, Huang XH, Tong KK. A study into a cost effective roll bonding process for clad metals. SIMTech Tech Rep. 2008;9:50–5.

Yin FX, Li L, Tanaka Y, Kishimoto S, Nagai K. Hot rolling bonded multilayered composite steels and varied tensile deformation behaviour. Mater Sci Technol. 2012;28:783–7. https://doi.org/10.1179/1743284711Y.0000000116.

Al-Ghamdi KA, Hussain G. SPIF of Cu/steel clad sheet: annealing effect on bond force and formability. Mater. Manuf. Process. 2016;31:758–63. https://doi.org/10.1080/10426914.2015.1048363.

Gupta P, Jeswiet J. Observations on heat generated in single point incremental forming. Procedia Eng. 2017. https://doi.org/10.1016/j.proeng.2017.04.060.

Al-Ghamdi KA, Hussain G. Parameter-formability relationship in ISF of tri-layered Cu–Steel–Cu composite sheet metal: response surface and microscopic analyses. Int. J. Precis. Eng. Manuf. 2016;17:1633–42. https://doi.org/10.1007/s12541-016-0189-3.

Al-Ghamdi KA, Hussain G. On the comparison of formability of roll-bonded steel-Cu composite sheet metal in incremental forming and stamping processes. Int J Adv Manuf Technol. 2016;87:267–78. https://doi.org/10.1007/s00170-016-8488-5.

Gheysarian A, Honarpisheh M. An Experimental Study on the process parameters of Incremental Forming of Explosively-Welded Al/Cu Bimetal. J. Comput. Appl. Res. Mech. Eng. 2017;7:73–83. https://doi.org/10.22061/JCARME.2017.646.

Sakhtemanian MR, Amini S, Honarpisheh M. Simulation and investigation of mechanical and geometrical properties of St/CP-Titanium bimetal sheet during the single point incremental forming process. IJMF Iran. J. Mater. Form. 2018;5:1–18. https://doi.org/10.22099/IJMF.2017.26024.1085.

Ashouri R, Shahrajabian H. Experimental investigation of incremental forming process of bilayer hybrid brass/St13 sheets. ADMT J. 2017;10:127–35.

Resistance P. Peel resistance of adhesives (T-peel test). Current. 2001;02:3–5. https://doi.org/10.1520/D1876-08R15E01.Copyright.

Hassan M, Ali A, Ilyas M, Hussain G, ul Haq I. Experimental and numerical simulation of Steel/Steel (St/St) interface in bi-layer sheet metal. Int. J. Light. Mater. Manuf. 2019. https://doi.org/10.1016/j.ijlmm.2019.03.002.

Method ST. D1002 standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading. Annu. B. ASTM Stand. 2009;01:1–5.

Tang C, Liu Z, Zhou D, Wu S. Surface treatment with the cold roll bonding process for an aluminum alloy and mild steel. Strength Mater. 2015;47:150–5. https://doi.org/10.1007/s11223-015-9641-3.

Noorman DC. Cohesive zone modelling in adhesively bonded joints: analysis on crack propagation in adhesives and adherends, Master's thesis, Delft University of Technology. 2014

Hosseini M, Dannesh Manesh H. Bond strength optimization of Ti/Cu/Ti clad composites produced by roll-bonding. Mater. Des. 2015;81:122–32. https://doi.org/10.1016/j.matdes.2015.05.010.

Movahedi M, Madaah-Hosseini HR, Kokabi AH. The influence of roll bonding parameters on the bond strength of Al-3003/Zn soldering sheets. Mater Sci Eng, A. 2008;487:417–23. https://doi.org/10.1016/j.msea.2007.10.019.

Jing YA, Qin Y, Zang X, Shang Q, Hua S. A novel reduction-bonding process to fabricate stainless steel clad plate. J. Alloys Compd. 2014;617:688–98. https://doi.org/10.1016/j.jallcom.2014.07.186.

Monazzah AH, Bagheri R, Reihani SS, Pouraliakbar H. Toughness enhancement in architecturally modified Al6061-5 vol.% SiCp laminated composites. Int. J. Damage Mech. 2014;24:245–62. https://doi.org/10.1177/1056789514529984.

Hosseini Monazzah A, Pouraliakbar H, Bagheri R, Seyed Reihani SM. Al-Mg-Si/SiC laminated composites: Fabrication, architectural characteristics, toughness, damage tolerance, fracture mechanisms. Compos. Part B Eng. 2017;125:49–70. https://doi.org/10.1016/j.compositesb.2017.05.055.

Prior AM. Applications of implicit and explicit finite element techniques to metal forming. J. Mater. Process. Tech. 1994;45:649–56. https://doi.org/10.1016/0924-0136(94)90413-8.

Ducobu F, Rivière-Lorphèvre E, Filippi E. On the introduction of adaptive mass scaling in a finite element model of Ti6Al4V orthogonal cutting. Simul Model Pract Theory. 2015;53:1–14. https://doi.org/10.1016/j.simpat.2015.02.003.

Wang L, Long H. Investigation of material deformation in multi-pass conventional metal spinning. Mater Des. 2011;32:2891–9. https://doi.org/10.1016/j.matdes.2010.12.021.

Hussain G, Gao L. A novel method to test the thinning limits of sheet metals in negative incremental forming. Int J Mach Tools Manuf. 2007;47:419–35. https://doi.org/10.1016/j.ijmachtools.2006.06.015.

Hussain G, Gao L, Hayat N, Qijian L. The effect of variation in the curvature of part on the formability in incremental forming: an experimental investigation. Int J Mach Tools Manuf. 2007;47:2177–81. https://doi.org/10.1016/j.ijmachtools.2007.05.001.

Hussain G, Gao L, Hayat N, Ziran X. A new formability indicator in single point incremental forming. J Mater Process Technol. 2009;209:4237–42. https://doi.org/10.1016/j.jmatprotec.2008.11.024.