Dehydrogenation as the mechanism of formation of the oriented spinel-pyroxene symplectites and magnetite-hematite inclusions in terrestrial and extraterrestrial olivines
Tóm tắt
A new approach is developed to explain the nature of oriented pyroxene-spinel symplectites and magnetite-hematite inclusions in olivines. Symplectites are considered the products of dehydrogenation and solid-state substitution of OH-bearing olivine-like precursor phases occured as lamellar inclusions in olivine. According to the dehydrogenation model, the precursor of the oriented symplectic pyroxene-spinel intergrowths in olivine hydrous olivine [3(Mg,Fe)2SiO4] · (MgH2SiO4), while the appearance of hematite-magnetite intergrowths in olivine is related to the dehydrogenation and dehydration of humite-like interlayers [n(Mg,Fe)2SiO4] · [Mg(OH2)]. The dehydrogenation reactions are accompanied by the transformation of divalent transition metals into a trivalent state and interdiffusion of Fe, Cr, Ca, Mg, and Al between precursor phase and host olivine under the long-term decompression at temperatures >800°C. The transformation of a pre-existing phase into symplectite was driven through the topotaxic reaction, fulfilling the following conditions: inheritance of crystallographic orientation of precursor phase by symplectite; preservation of volume during reaction, i.e. tendency to zero volume effect of the reaction1; the mass conservation, which is consistent with a solid state reaction in a closed system without external input of chemical elements in olivine.
Tài liệu tham khảo
Arai, S., Chromian spinel lamellae in olivine from the Iwanai-Dake peridotite massif, Hokkaido, Japan, Earth Planet. Sci. Lett., 1978, vol. 39, pp. 267–273.
Ashworth, J.R. and Chambers, A.D., Symplectic reaction in olivine and the controls of intergrowth spacing in symplectites, J. Petrol., 2000, vol. 41, pp. 285–304.
Bell, P.M., Mao, H.K., Roedder, E., and Weiblen, P.W., The problem of the origin of symplectites in olivine-bearing lunar rocks, Proceedings of 6th Lunar Science Conference, 1975, pp. 231–248.
Bell, D.R., Rossman, G.R., and Moore, R.O., Abundance and partitioning of OH in a high-pressure magmatic system: megacrysts from the Monastery kimberlite, South Africa, J. Petrol., 2004, vol. 45, pp. 1539–1564.
Boctor, N.Z., Alexander, C.M.O’D., Wang, J., and Hauri, E., The sources of water in martian meteorites: clues from hydrogen isotopes, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 3971–3989.
Boctor, N. and Alexander, A., Volatile abundances and H isotope signatures of melt inclusions and nominally anhydrous minerals in SNC martian meteorites, EGU General Assembly, Geophys. Res. Abstr., 2008, vol. 10.
Churakov, S., Khisina, N.R., Urusov, V.S., and Wirth, R., First principle study of (MgH2SiO4) · n(Mg2SiO4) hydrous olivine structures. I. Crystal structure modeling of hydrous olivine Hy-2a (MgH2SiO4) · 3(Mg2SiO4), Phys. Chem. Mineral., 2003, vol. 30, pp. 1–11.
Dudnikova, V.B., Gaister, A.V., Zharikov, E.V., Senin, V.G., and Urusov, V.S., Chromium distribution between forsterite and its melt: dependence on chromium content in melt and redox conditions, Geochem. Int., 2005, vol. 43, no. 5, pp. 471–477.
Efimov, A.A. and Malich, K.N., Magnetite-orthopyroxene symplectites in the Uralian gabbros: structural trace of oxidation, Zap. Ross. Mineral. O-va, 2010, no. 5, pp. 18–28.
Elardo, S.M., McCubbin, F.M., and Shearer, C.K., Chromite symplectites in Mg-suite troctolite 76535 as evidence for infiltration metasomatism of a lunar layered intrusion, Geochim. Cosmochim. Acta, 2013, vol. 87, pp. 154–177.
Field, S.W., Diffusion, discontinuous precipitation, metamorphism, and metasomatism: the complex history of South African upper-mantle symplectites, Am. Mineral., 2008, vol. 93, pp. 618–631.
Franz, L., Spinel inclusions in olivine of peridotitic xenoliths from Tubaf Seamount (Bismarck archipelago (Papua New Guinea)): evidence for the thermal and tectonic evolution of the oceanic lithosphere, Contrib. Mineral. Petrol., 2000, vol. 140, pp. 283–294.
Gooley, R., Brett, R., Warner, J., and Smyth, J.R., A lunar rock of deep crustal origin: sample 76535, Geochim. Cosmochim. Acta, 1974, vol. 38, pp. 1329–1339.
Green, H.W. and Burnley, P.C., Pyroxene-spinel symplectites: origin by decomposition of garnet confirmed, EOS Transactions American Geophysical Union, 1988, vol. 69, p. 1514.
Greenwood, J.P., Itoh, S., Sakamoto, N., Warren, P.H., Taylor, L.A., and Yurimoto, H., Towards to wetter Moon: implications of high volatile abundances in lunar apatite, Proceedings of 43rd Lunar Planet. Sci. Conference, 2012, #2089.
Greshake, A., Stephen, T., and Rost, D., Symplectic exsolutions in olivine from the Martian meteorite Chassigny: evidence for slow cooling under highly oxidizing conditions, Proceedings of 29th Lunar Planet. Sci. Conf., 1998, #1069.
Greshake, A., Stephen, T., and Rost, D., Combined TEM and TOF-SIMS study of symplectic exsolutions in olivine from martian meteorites Nakhla and Governador Valadarez, Proceedings of the 31rst Lunar Planet. Sci. Conference, 2000, #1150.
Greshake, A. and Stöffler, D., Shock metamorphic features in the SNC meteorite Dar Al Gani 476, Proceedings of the 30th Lunar Planet. Sci. Conference, 1999, # 1377.
Hwang, S.-L., Yoi, T.-F., Chu, H.-T., Chen, P., Iizuka, Y., Yang, H.-Y., Yang, H.-Y., Yang, J., and Xu, Z., Hematite and magnetite precipitates in olivine from the Sula peridotite: a result of dehydrogenation-oxidation reaction of mantle olivine?, Am. Mineral., 2008, vol. 93, pp. 1051–1060.
Iishi, K. and Okamoto, K., Synthesis of laihunite from Fe-(Mg,Co,Mn,Ca) olivines, Neues Jahrb. Mineral. Monatsh, 1989, vol. 8, pp. 345–356.
Ito, M. and Ganguly, J., Diffusion kinetics of Cr in olivine and 53Mn-53Cr thermochronology of early solar system objects, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 799–809.
Kadik, A.A., Kurovskaya, N.A., Ignat’ev, Yu.A., Kononkova, N.N., Koltashev, V.V., and Plotnichenko, V.G., Influence of oxygen fugacity on the solubility of carbon and hydrogen in FeO-Na2O-SiO2-Al2O3 melts in equilibrium with liquid iron at 1.5 GPa and 1400°C, Geochem. Int., 2010, no. 10, pp. 1011–1018.
Kadik, A.A., Pineau, F., Litvin, Yu., Jendrzejewski, N., Martines, I., and Javoy, M., Formation of carbon and hydrogen species in magmas at low oxygen fugacity, J. Petrol., 2004, vol. 45, pp. 1297–1310.
Khisina, N.R., Khramov, D.A., Kolosov, M.V., Kleschev, A.A., and Taylor, L.A., Formation of ferriolivine and magnesioferrite from Mg-Fe-olivine: reactions and kinetics of oxidation, Phys. Chem. Mineral., 1995, vol. 22, pp. 241–250.
Khisina, N.R. and Wirth, R., Hydrous olivine (Mg1 − y Fe 2+y )2 − x vxSiO4H2x —a new DHMS phase of variable composition observed as nanometer-sized precipitation in mantle olivine, Phys. Chem. Mineral., 2002, vol. 29, pp. 98–111.
Khisina, N., Wirth, R., Matsyuk, S., and Koch-Müller, M., Microstructures and OH-bearing nano-inclusions in “wet” olivine xenocrysts from the Udachnaya kimberlite, Eur. J. Mineral., 2008, vol. 20, no. 6, pp. 1067–1078.
Khisina, N.R., Nazarov, M.A., Wirth, R., and Badyukov, D.D., Lamellar spinel-pyroxene symplectites in lunar olivine: evidence for H2O traces in lunar magmas?, Meteoritics and Planetary Science, 2009, vol. 44, p. 5034.
Khisina, N.R., Wirth, R., and Nazarov, M.A., Lamellar pyroxene-spinel symplectites in lunar olivine from the Luna 24 regolith, Geochem. Int., 2011, no. 5, pp. 449–458.
Khisina, N.R., Wirth, R., Abart, R., Rhede, D., and Heinrich, W., Oriented chromite-diopside symplectic inclusions in olivine from lunar regolith delivered by “Luna-24” mission, Geochim. Cosmochim. Acta, 2013, vol. 104, pp. 84–98.
Khisina, N.R. and Lorenz, C.A., Symplectites in terrestrial and extraterrestrial olivines: dehydrogenization-oxidation model, in Eksperimental’naya geokhimiya (Experimental Geochemistry), 2013, vol. 1, http://exp-geochem.ru/JPdf/01-Planetology/01-Rus/18-01-Rus.pdf.
Khisina, N.R., Lorenz, C.A., Habler, G., Abart, R., Ntaflos, Th., and Brandstaetter, F., Chromite precipitation and chromite-orthopyroxene symplectites in the pyroxenite fragment from the Yurtuk howardite, Proceedings of 45th Lunar Planet. Sci. Conf., 2014, #1068.
Kitamura, M., Kondoh, S., Morimoto, N., Miller, G., Rossman, G.R., and Putnis, A., Planar OH-bearing defects in mantle olivine, Nature, 1987, vol. 328, pp. 143–145.
Koch-Müller, M., Abs-Wurmbach, I., Rhede, D., Kahlenberg, V., and Matsyuk, S., Dehydration experiments on natural omphacites: qualitative and quantitative characterization by various spectroscopic methods, Phys. Chem. Mineral., 2006a, vol. 34, no. 9, pp. 663–678.
Koch-Müller, M., Matsyuk, S.S., Rhede, D., Wirth, R., and Khisina, N., Hydroxyl in mantle olivine xenocrysts from the Udachnaya kimberlite pipe, Phys. Chem. Mineral., 2006b, vol. 33, pp. 276–287.
Kohlstedt, D.L., Keppler, H., and Rubie, D.C., Solubility of water in the α, β, and γ phases of (Mg,Fe)2SiO4, Contrib. Mineral. Petrol., 1996, vol. 123, pp. 345–357.
Kurosawa, M., Yurimoto, H., and Sueno, S., Patterns in the hydrogen and trace element compositions of mantle olivines, Phys. Chem. Mineral., 1997, vol. 24, pp. 385–395.
Lorenz, K.A., Habler, G., Abart, R., and Khisina, N.R., Structure and composition of chromite-pyroxene symplectites in meteorites, Eksperimental’naya Geokhimiya, 2013, vol. 1, no. 1. http://exp-geochem.ru/JPdf/01_Planetology/01_Rus/18_01_Rus.pdf
Markl, G., Marks, M., and Wirth, R., The influence of T, aSiO2, and fO2 on exsolution textures in Fe-Mg olivine: an example from augite syenites of the Ilimaussaq intrusion, South Greenland, Am. Mineral., 2001, vol. 86, pp. 36–46.
Matsyuk, S.S. and Langer, K., Hydroxyl in olivine from mantle xenoliths in kimberlites from the Siberian Platform, Contrib. Mineral. Petrol., 2004, vol. 147, pp. 413–43.
Mikouchi, T., Yamada, I., and Miyamoto, M., Symplectic exsolution in olivine from the Nakhla martian meteorite, Meteorit. Planet. Sci., 2000, vol. 35, pp. 937–942.
Miller, G.H., Rossman, G.R., and Harlow, G.E., The natural occurrence of hydrogen in olivine, Phys. Chem. Minerals, 1987, vol. 14, pp. 461–472.
Moseley, D., Symplectic exsolution in olivine, Am. Mineral. 1984, vol. 69, pp. 139–153.
Mosenfelder, J.L., Deligne, N.I., Asimov, P.D., and Rossman, G.R., Hydrogen incorporation in olivine from 2–12 GPa, Am. Mineral., 2006a, vol. 91, pp. 285–294.
Mosenfelder, J.L., Sharp, T.G., Azimov, P.D., and Rossman, G.R., Hydrogen incorporation in natural mantle olivines, in Earth’s Deep Water Cycle, Jakobsen, S.D. and Van der Lee, S., Eds., Geophys Monograph Ser., 2006b, vol. 168, pp. 45–56.
Nicholis, M.G. and Rutherford, M.J., Graphite oxidation in the Apollo 17 orange glass magma: implications for the generation of a lunar volcanic gas phase, Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 5905–5917.
Papike, J.J., Karner, J.M., and Shearer, C.K., Comparative planetary mineralogy: valence state partitioning of Cr, Fe, Ti and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts, Am. Mineral., 2005, vol. 90, pp. 277–290.
Peslier, A.H. and Luhr, J.F., Hydrogen loss from olivines in mantle xenoliths from Sincoe (USA) and Mexico mafic alcalic magma ascent rates and water budget of the subcontinental lithosphere, Earth Planet. Sci. Lett., 2006, vol. 242, pp. 302–319.
Sibelev, O.S., Decompression symplectites in the apoeclogites of the Gridino melange zone, Belomorian mobile belt, Geol. Polezn. Iskop. Karelii, 2010, no. 13, pp. 66–72.
Skogby, H., Water in natural mantle minerals I: pyroxenes, in Water in nominally anhydrous minerals, Keppler, H. and Smyth, J.R., Eds., Rev. Mineral. Geochem., 2006, vol. 62, pp. 155–167.
Stevens, M.R., Bell, D.R., and Buseck, P.R., Tabular symplectic inclusions in olivine from the Fukang pallasite, Meteorit. Planet. Sci., 2010, vol. 45, no. 5, pp. 899–910.
Sutton, S.R., Jones, K.W., Gordon, B., Rivers, M.L., Bajt, S., and Smith, J.V., Reduced chromium in olivine grains from lunar basalt 15555: X-ray absorption near edge structure (XANES), Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 461–468.
Ultrahigh-Pressure Mineralogy: Physics and Chemistry of the Earth’s Deep Interior, Hemley, R.J., Ed., Mineral. Soc. Am. Rev. Mineral., 1998, vol. 37.
Water in Nominally Anhydrous Minerals, H. Keppler and J.R. Smyth, Eds., Rev. Mineral. Geochem., 2006, vol. 62.
Wirth, R., Dobrzhinetskaya, L., and Green II, H.W., Electron microscope study of the reaction olivine + H2O + TiO2 titanian clinohumite + titanian chondrodite synthesized at 8 GPa, 1300°C, Am. Mineral., 2001, vol. 86, pp. 601–610.