Degradation behaviour of fresh and pre-used ethanolamine

Carbon Capture Science & Technology - Tập 7 - Trang 100110 - 2023
Vanja Buvik1, Solrun J. Vevelstad2, Peter Moser3, Georg Wiechers3, Ricardo R. Wanderley4, Juliana Garcia Moretz-Sohn Monteiro5, Hanna K. Knuutila1
1Department of Chemical Engineering, NTNU, NO-7491, Norway
2SINTEF Industry, NO-7465 Trondheim, Norway
3RWE Power AG, Ernestinenstrasse 60, 45141 Essen, Germany
4Aker Carbon Capture, Okenøyveien 8, 1366 Lysaker, Norway
5Sustainable Process and Energy System, TNO Energy Transition, Leeghwaterstraat 44, 2628CA Delft, Netherlands

Tài liệu tham khảo

Amundsen, 2009, Density and viscosity of monoethanolamine + water + carbon dioxide from (25 to 80) °C, J. Chem. Eng. Data, 54, 3096, 10.1021/je900188m Biermann, 2022 Blachly, 1963 Blachly, 1964 Buvik, 2021, Stability of structurally varied aqueous amines for CO2 capture, Ind. Eng. Chem. Res., 60, 5627, 10.1021/acs.iecr.1c00502 Buvik, 2021, Addition of potassium iodide reduces oxidative degradation of monoethanolamine (MEA), Chem. Eng. Sci. X da Silva, 2012, Understanding 2-ethanolamine degradation in postcombustion CO2 capture, Ind. Eng. Chem. Res., 51, 13329, 10.1021/ie300718a Dai, 2012, Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration, Environ. Sci. Technol., 46, 9793, 10.1021/es301867b Dhingra, 2017, Understanding and modelling the effect of dissolved metals on solvent degradation in post combustion CO2 capture based on pilot plant experience, Energies, 10, 10.3390/en10050629 Fostås, 2011, Effects of NOx in the flue gas degradation of MEA, Energy Procedia, 4, 1566, 10.1016/j.egypro.2011.02.026 Fytianos, G., Grimstvedt, A.M., Knuutila, H., Svendsen, H.F., 2014. Effect of MEA's degradation products on corrosion at CO2 capture plants. doi:10.1016/j.egypro.2014.11.195. Fytianos, 2016, Degradation and corrosion inhibitors for MEA-based CO2 capture plants, Int. J. Greenhouse Gas Control, 50, 240, 10.1016/j.ijggc.2016.05.003 Goff, G.S., 2005. Oxidative Degradation of Aqueous Monoethanolamine in CO2 Capture Processes: Iron and Copper Catalysis, Inhibition, and O2 Mass Transfer. https://sites.utexas.edu/rochelle/files/2015/02/Dissertation-PrintCopy-final-2sided.pdf. Goff, 2006, Oxidation inhibitors for copper and iron catalyzed degradation of monoethanolamine in CO2 capture processes, Ind. Eng. Chem. Res., 45, 2513, 10.1021/ie0490031 Léonard, 2014, Influence of dissolved metals and oxidative degradation inhibitors on the oxidative and thermal degradation of monoethanolamine in postcombustion CO2 capture, Ind. Eng. Chem. Res., 53, 18121, 10.1021/ie5036572 Ma’mun, 2006, Experimental and modeling study of the solubility of carbon dioxide in aqueous 30 mass% 2-((2-aminoethyl) amino) ethanol solution, Ind. Eng. Chem. Res., 45, 2505, 10.1021/ie0505209 Morken, 2014, Emission results of amine plant operations from MEA testing at the CO2 technology centre Mongstad, Energy Procedia, 63, 6023, 10.1016/j.egypro.2014.11.636 Morken, 2017, 1245 Moser, 2020, Results of the 18-month test with MEA at the post-combustion capture pilot plant at Niederaussem – new impetus to solvent management, emissions and dynamic behaviour, Int. J. Greenhouse Gas Control, 95, 10.1016/j.ijggc.2019.102945 Moser, P., Wiechers, G., Schmidt, S., Veronezi Figueiredo, R., Skylogianni, E., Garcia Moretz-Sohn Monteiro, J., 2022. Conclusions from 3 years of continuous capture plant operation without exchange of the AMP/PZ-based solvent at Niederaussem–Insights into solvent degradation management. (October 27, 2022). doi:10.2139/ssrn.4274015. Nielsen, 2017, Effects of catalysts, inhibitors, and contaminants on piperazine oxidation, Energy Procedia, 114, 1919, 10.1016/j.egypro.2017.03.1323 Reynolds, 2015, Evaluation of methods for monitoring MEA degradation during pilot scale post-combustion capture of CO₂, Int. J. Greenhouse Gas Control, 39, 407, 10.1016/j.ijggc.2015.06.001 Reynolds, 2015, Monoethanolamine degradation during pilot-scale post-combustion capture of CO2 from a brown coal-fired power station, Energy Fuels, 29, 7441, 10.1021/acs.energyfuels.5b00713 Rogelj, 2018, Mitigation Pathways Compatible with 1.5 °C in the Context of Sustainable Development Schumpe, 1978, Solubility of oxygen in electrolyte solutions, Biotechnol. Bioeng., 20, 145, 10.1002/bit.260200114 Sexton, 2009, Catalysts and inhibitors for oxidative degradation of monoethanolamine, Int. J. Greenhouse Gas Control, 3, 704, 10.1016/j.ijggc.2009.08.007 Supap, 2011, Investigation of degradation inhibitors on CO2 capture process, Energy Procedia, 4, 583, 10.1016/j.egypro.2011.01.092 Thompson, 2017, Pilot testing of a heat integrated 0.7MWe CO2 capture system with two-stage air-stripping: amine degradation and metal accumulation, Int. J. Greenhouse Gas Control, 64, 23, 10.1016/j.ijggc.2017.07.004 Thorstad, 2021 Vevelstad, 2022, Important aspects regarding the chemical stability of aqueous amine solvents for CO2 capture, Ind. Eng. Chem. Res, 61, 15737 Vevelstad, 2013, Oxidative degradation of 2-ethanolamine: the effect of oxygen concentration and temperature on product formation, Int. J. Greenhouse Gas Control, 18, 88, 10.1016/j.ijggc.2013.06.008 Vevelstad, 2016, Extensive dataset for oxidative degradation of ethanolamine at 55–75 °C and oxygen concentrations from 6 to 98%, Int. J. Greenhouse Gas Control, 50, 158, 10.1016/j.ijggc.2016.04.013 Voice, A.K., 2013. Amine oxidation in carbon dioxide capture by aqueous scrubbing. https://sites.utexas.edu/rochelle/files/2015/02/Voice-2013-Amine-Oxidation-in-Carbon-Dioxide-Capture-by-Aqueous-Scrubbing.pdf. Voice, 2014, Inhibitors of monoethanolamine oxidation in CO2 capture processes, Ind. Eng. Chem. Res., 53, 16222, 10.1021/ie500996z