Hành vi phân hủy của composite nền PLA với 20 vol% dây hợp kim magie dưới điều kiện tải trọng tĩnh

Journal of Materials Science - Tập 54 - Trang 4701-4709 - 2018
Chenglin Chu1,2, Xuan Li3,4, Weidong Yu1,2, Linyuan Han1,2, Jing Bai1,2, Feng Xue1,2
1School of Materials Science and Engineering, Southeast University, Nanjing, China
2Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, China
3School of Materials Engineering, Nanjing Institute of Technology, Nanjing, China
4Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing, China

Tóm tắt

Ảnh hưởng của tải trọng nén tĩnh lên hành vi phân hủy của composite nền axit polylactic được gia cường với 20 vol% dây hợp kim magie (MAWs) đã được nghiên cứu. Sự căng thẳng bên ngoài sẽ làm tăng tốc độ phân hủy của composite. Khi tải trọng được tăng từ 1 lên 3 MPa, tỷ lệ phân hủy tổng thể tăng lên. Sau khi ngâm trong 30 ngày, tỷ lệ phân hủy của ma trận PLA trong composite ở mức tải trọng 3 MPa khoảng 1.46 và 2.4 lần so với mức tải trọng 1 và 0 MPa (trong điều kiện không tải), trong khi mức giữ lại độ bẻ cong lần lượt là 0.73 và 0.63 lần so với các mẫu kia. Mối quan hệ giữa tỷ lệ phân hủy của ma trận PLA trong composite và áp lực nén bên ngoài được làm sáng tỏ thêm. Sự căng thẳng bên ngoài làm suy giảm khả năng giữ lại độ bền của composite nhưng hàm lượng MAWs cao có thể giảm thiểu sự suy giảm này.

Từ khóa

#phân hủy #composite #axit polylactic #hợp kim magie #tải trọng tĩnh

Tài liệu tham khảo

Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Peter Augat (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 355:S132–S147 Südkamp N, Bayer J, Hepp P, Voigt C, Oestern H, Kääb M, Luo C, Plecko M, Wendt K, Köstler W (2009) Open reduction and internal fixation of proximal humeral fractures with use of the locking proximal humerus plate. J Bone Joint Surg Am 91:1320–1328 Perren S (1979) Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res 138:175–196 Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R 77:1–34 Törne K, Örnberg A, Weissenrieder J (2017) Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments. Acta Biomater 48:541–550 Li X, Chu C, Chu PK (2016) Effects of external stress on biodegradable orthopedic materials: a review. Bioact Mater 1:77–84 Li X, Chu CL, Liu L, Liu XK, Bai J, Guo C, Xue F, Lin PH, Chu PK (2015) Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires. Biomaterials 49:135–144 Wu YH, Li N, Cheng Y, Zheng YF, Han Y (2013) In vitro study on biodegradable AZ31 magnesium alloy fibers reinforced PLGA composite. J Mater Sci Technol 29:545–550 Oosterbeek RN, Seal CK, Staiger MP, Hyland MM (2015) Topologically ordered magnesium-biopolymer hybrid composite structures. J Biomed Mater Res A 103:311–317 Uppstu P, Paakki C, Rosling A (2015) In vitro hydrolysis and magnesium release of poly(d, l-lactide-co-glycolide)-based composites containing bioresorbable glasses and magnesium hydroxide. J Appl Polym Sci 132:42646. https://doi.org/10.1002/app.42646 Liu H, Wang R, Chu HK, Sun D (2015) Design and characterization of a conductive nanostructured polypyrrole-polycaprolactone coated magnesium/PLGA composite for tissue engineering scaffolds. J Biomed Mater Res A 103:2966–2973 Cifuentes SC, Gavilán R, Lieblich M, Benavente R, González-Carrasco JL (2016) In vitro degradation of biodegradable polylactic acid/magnesium composites: relevance of Mg particle shape. Acta Biomater 32:348–357 Wen W, Zou Z, Luo B, Zhou C (2017) In vitro degradation and cytocompatibility of g-MgO whiskers/PLLA composites. J Mater Sci 52:2329–2344. https://doi.org/10.1007/s10853-016-0525-0 Fan YB, Li P, Zeng L, Huang XJ (2008) Effects of mechanical load on the degradation of poly(d, l-lactic acid) foam. Polym Degrad Stab 93:677–683 Guo M, Chu Z, Yao J, Feng W, Wang Y, Wang L, Fan Y (2016) The effects of tensile stress on degradation of biodegradable PLGA membranes: a quantitative study. Polym Degrad Stab 124:95–100 Gutman EM (1998) Mechanochemistry of materials. Cambridge Int Science Publishing, Cambridge Gutman EM (1994) Mechanochemistry of solid surfaces. World Scientific, Singapore Baláž P (2003) Mechanical activation in hydrometallurgy. Int J Miner Pro 72:341–354 Bonora PL, Andrei M, Eliezer A, Gutman EM (2002) Corrosion behaviour of stressed magnesium alloys. Corros Sci 44:729–749 Chu CL, Han X, Bai J, Xue F, Chu PK (2012) Fabrication and degradation behavior of micro-arc oxidized biomedical magnesium alloy wires. Surf Coat Technol 213:307–312 Kirkland NT, Birbilis N (2014) Magnesium biomaterials: design, testing, and best practice. Springer, Cham Schindler A, Harper D (1979) Polylactide. II. Viscosity–molecular weight relationships and unperturbed chain dimensions. J Polym Sci Pol Phys Ed 17:2593–2599 Piemonte V, Gironi F (2013) Kinetics of hydrolytic degradation of PLA. J Polym Environ 21:313–318 Codari F, Lazzari S, Soos M, Storti G, Morbidelli M, Moscatelli D (2012) Kinetics of the hydrolytic degradation of poly(lactic acid). Polym Degrad Stab 97:2460–2466 Deng M, Zhou J, Chen G, Burkley D, Xu Y, Jamiolkowski D, Barbolt T (2005) Effect of load and temperature on in vitro degradation of poly(glycolide-co-l-lactide) multifilament braids. Biomaterials 26:4327–4336 Kharazi AZ, Fathi MH, Bahmani F, Fanian H (2012) Nonmetallic textile composite bone plate with desired mechanical properties. J Compos Mater 46:2753–2761 Fan Y, Li P, Yuan X (2010) Influence of mechanical loads on degradation of scaffolds. In: Lim CT, Goh JCH (eds). 6th world congress of biomechanics (WCB 2010) August 1–6, 2010 Springer, Berlin, pp 549–552 Rapoport NY, Gennadii EZ (1983) Kinetics and mechanism of the oxidation of polymers in a stressed state. Russ Chem Rev 52:897–916 Ward IM, Sweeney J (2012) Mechanical properties of solid polymers. Wiley, New York Li X, Chu C, Zhou L, Bai J, Guo C, Xue F, Lin P, Chu Paul K (2017) Fully degradable PLA-based composite reinforced with 2D-braided Mg wires for orthopedic implants. Compos Sci Technol 142:180–188 Li X, Chu C, Wei Y, Qi C, Bai J, Guo C, Lin P, Chu Paul K (2017) In vitro degradation kinetics of pure PLA and Mg/PLA composite: effects of immersion temperature and compression stress. Acta Biomater 48:468–478 Zhang Y, Zale S, Sawyer L, Bernstein H (1997) Effects of metal salts on poly(DL-lactide-co-glycolide) polymer hydrolysis. J Biomed Mater Res 34:531–538 Mobedi H, Nekoomanesh M, Orafaei H, Mivehchi H (2006) Studying the degradation of poly(L-lactide) in presence of magnesium hydroxide. Iran Polym J 15:31–39